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This chapter concerns the long-term dynamical evolution ofplanetary systems from
both theoretical and observational perspectives. We beginby discussing the planet-planet
interactions that take place within our own Solar System. Wethen describe such interactions in
more tightly-packed planetary systems. As planet-planet interactions build up, some systems
become dynamically unstable, leading to strong encountersand ultimately either ejections or
collisions of planets. After discussing the basic physicalprocesses involved, we consider how
these interactions apply to extrasolar planetary systems and explore the constraints provided by
observed systems. The presence of a residual planetesimal disc can lead to planetary migration
and hence cause instabilities induced by resonance crossing; however, such discs can also
stabilise planetary systems. The crowded birth environment of a planetary system can have
a significant impact: close encounters and binary companions can act to destabilise systems,
or sculpt their properties. In the case of binaries, the Kozai mechanism can place planets on
extremely eccentric orbits which may later circularise to produce hot Jupiters.

1. INTRODUCTION

Currently observed planetary systems have typically
evolved between the time when the last gas in the protoplan-
etary disc was dispersed, and today. The clearest evidence
for this assertion comes from the distribution of Kuiper belt
objects in the outer solar system, and from the eccentrici-
ties of massive extrasolar planets, but many other observed
properties of planetary systems may also plausibly be the
consequence of dynamical evolution. This chapter sum-
marizes the different types of gravitational interactionsthat
lead to long-term evolution of planetary systems, and re-

views the application of theoretical models to observations
of the solar system and extrasolar planetary systems.

Planetary systems evolve due to the exchange of angu-
lar momentum and / or energy among multiple planets, be-
tween planets and disks of numerous small bodies (“plan-
etesimals”), between planets and other stars, and via tides
with the stellar host. A diverse array of dynamical evolution
ensues. In the simplest cases, such as a well-separated two
planet system, the mutual perturbations lead only to peri-
odic oscillations in the planets’ eccentricity and inclination.
Of greater interest are more complex multiple planet sys-
tems where the dynamics is chaotic. In different circum-
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stances the chaos can lead to unpredictable (but bounded)
excursions in planetary orbits, to large increases in eccen-
tricity as the system explores the full region of phase space
allowed by conservation laws, or to close approaches be-
tween planets resulting in collisions or ejections. Qualita-
tive changes to the architecture of planetary systems can
likewise be caused by dynamical interactions in binary sys-
tems, by stellar encounters in clusters, or by changes to
planetary orbits due to interactions with planetesimal discs.

Theoretically, there has been substantial progress since
the lastProtostars and Planetsmeeting in understanding
the dynamics that can reshape planetary systems. Observa-
tional progress has been yet more dramatic. Radial velocity
surveys and the Kepler mission have provided extensive cat-
alogues of single and multiple planet systems, that can be
used to constrain the prior dynamical evolution of planetary
systems (see the chapter byFischer et al.for more details).
Routine measurements of the Rossiter-McLaughlin effect
for transiting extrasolar planets have shown that a signifi-
cant fraction of hot Jupiters have orbits that are misaligned
with respect to the stellar rotation axis, and have prompted
new models for how hot Jupiters form. Despite this wealth
of data, the relative importance of different dynamical pro-
cesses in producing what we see remains unclear, and we
will discuss in this review what new data is needed to break
degeneracies in the predictions of theoretical models. Also
uncertain is which observed properties of planetary systems
reflect dynamical evolution taking place subsequent to the
dispersal of the gas disk (the subject of this chapter), and
which involve the coupled dynamics andhydrodynamics
of planets, planetesimals and gas within the protoplanetary
disc. The chapter byBaruteau et al. (2013) reviews this
earlier phase of evolution.

We begin this chapter by considering the long term sta-
bility of the solar system. The solar system is chaotic, but
our four giant planets are fundamentally stable, and there
is only a small probability that the terrestrial planets will
experience instability during the remaining main-sequence
lifetime of the Sun. We then compare the current solar sys-
tem to more tightly-packed planetary systems, which are
hypothesized progenitors to both the solar system and ex-
trasolar planetary systems. We discuss the conditions, time
scales and outcomes of the dynamical instabilities that can
be present in such systems, and compare theoretical models
to the observed population of extrasolar planets. We then
review how interactions between planets and residual plan-
etesimal disks can lead to planetary migration, which de-
pending on the circumstances can either stabilize or desta-
bilize a planetary system. Finally we discuss the outcome
of dynamical interactions between planetary systems and
other stars, whether bound in binaries or interlopers that
perturb planets around stars in stellar clusters. Dynamical
evolution driven by inclined stellar-mass (and possibly sub-
stellar or planetary-mass) companions provides a route to
the formation of hot Jupiters whose orbits are misaligned to
the stellar equator, and we review the status of models for
this process (often called the Kozai mechanism). We close

with a summary of the key points of this chapter.

2. THE SOLAR SYSTEM TODAY

A quick glance at our system, with the planets moving
on quasi-circular and almost coplanar orbits, well separated
from each other, suggests the idea of a perfect clockwork
system, where the orbital frequencies tick the time with un-
surpassable precision. But is it really so? In reality, due
to their mutual perturbations, the orbits of the planets must
vary over time.

To a first approximation, these variations can be de-
scribed by a secular theory developed by Lagrange and
Laplace (seeMurray and Dermott1999) in which the or-
bital elements that describe a fixed Keplerian orbit change
slowly over time. The variations can be found using Hamil-
ton’s equations, expanding the Hamiltonian in a power se-
ries in terms of the eccentricitye and inclinationi of each
planet, and neglecting high-frequency terms that depend on
the mean longitudes. Only the lowest order terms are re-
tained sincee andi are small for the planetary orbits. The
variations for a system of planetsj (ranging from 1 toN )
can then be expressed as

ej sin̟j =

N
∑

k=1

ekj sin(gkt+ βk)

ej cos̟j =
N
∑

k=1

ekj cos(gkt+ βk) (1)

with similar expressions fori. Here̟ is the longitude of
perihelion, and the quantitiesekj , gk, andβk are determined
by the planet’s masses and initial orbits.

In the Lagrange-Laplace theory, the orbits’ semi-major
axesa remain constant, whilee andi undergo oscillations
with periods of hundreds of thousands of years. The or-
bits change, but the variations are bounded, and there are
no long-term trends. Even at peak values, the eccentricities
are small enough that the orbits do not come close to inter-
secting. Therefore, the Lagrange-Laplace theory concludes
that the solar system is stable.

The reality, however, is not so simple. The Lagrange-
Laplace theory has several drawbacks that limit its useful-
ness in real planetary systems. It is restricted to small values
of e andi; theories based on higher order expansions exist,
but they describe a much more complex time-dependence
of eccentricities and inclinations, whose Fourier expan-
sions involve harmonics with argumentνt where ν =
∑N

k=1
nkgk + mksk andnk,mk are integers, andg ands

are secular frequencies associated withe andi respectively.
The coefficients of these harmonics are roughly inversely
proportional toν, so that the Fourier Series representation
breaks down whenν ∼ 0, a situation calledsecular reso-
nance.

Moreover, the Lagrange-Laplace theory ignores the ef-
fects of mean-motion resonances or near resonances be-
tween the orbital periods of the planets. The existence of
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mean-motion resonances can fundamentally change the dy-
namics of a planetary system and alter its stability in ways
not predicted by Lagrange-Laplace theory. In particular, the
terms dependent on the orbital frequencies, ignored in the
Lagrange-Laplace theory, become important when the ratio
of two orbital periods is close to the ratio of two integers.
This situation arises whenever the critical argumentφ varies
slowly over time, where

φ = k1λi + k2λj + k3̟i + k4̟j + k5Ωi + k6Ωj (2)

for planetsi andj, whereλ is the mean longitude,Ω is the
longitude of the ascending node, andk1−6 are integers. The
k3−6 terms are included because the orbits will precess in
general, so a precise resonance is slightly displaced from
the case wherek1/k2 is a ratio of integers.

To leading order, the evolution at a resonance can be de-
scribed quite well using the equation of motion for a pen-
dulum (Murray and Dermott1999):

φ̈ = −ω2 sinφ (3)

At the centre of the resonance,φ andφ̇ are zero and re-
main fixed. Whenφ is slightly non-zero initially,φ librates
about the equilibrium point with a frequencyω that depends
on the amplitude of the librations. The semi-major axes and
eccentricities of the bodies involved in the resonance un-
dergo oscillations with the same frequency. There is a max-
imum libration amplitude for whichφ approaches±π. At
larger separations from the equilibrium point,φ circulates
instead and the system is no longer bound in resonance.

Whereas a single resonance exhibits a well-behaved,
pendulum-like motion as described above, when multiple
resonances overlap the behavior near the boundary of each
resonance becomes erratic, which leads to chaotic evolu-
tion. Because the frequencies of the angles̟i,j andΩi,j

are small relative to the orbital frequencies (i.e. the frequen-
cies ofλi,j), in general resonances with the samek1, k2 but
different values ofk3,...,6 overlap with each other. Thus,
quite generically, a region of chaotic motion can be found
associated with each mean-motion resonance.

There are no mean-motion resonances between pairs of
Solar System planets. Jupiter and Saturn, however, are
close to the 2:5 resonance, and Uranus and Neptune are
close to the 1:2 resonance. In both cases, the resonant an-
gleφ is in circulation and does not exhibit chaotic motion.
In general, systems can supportN -body resonances, which
involve integer combinations of the orbital frequencies of
N planets, withN > 2. The forest of possible resonances
becomes rapidly dense, and increases with the numberN
of planets involved. As a result, analytic models become
inappropriate to describe precisely the dynamical evolution
of a system with many planets.

Fortunately, modern computers allow the long-term evo-
lution of the Solar System to be studied numerically using
N -body integrations. These calculations can include all rel-
evant gravitational interactions and avoid the approxima-
tions inherent in analytic theories. One drawback is thatN -

body integrations can never prove the stability of a system,
only its stability for the finite length of an integration.

N -body integrations can be used to distinguish between
regular and chaotic regions, and quantify the strength of
chaos, by calculating the system’s Lyapunov exponentΓ,
given by

Γ = lim
t→∞

ln[d(t)/d(0)]

t
(4)

whered is the separation between two initially neighboring
orbits. Regular orbits diverge from one another at a rate
that is a power of time. Chaotic orbits diverge exponen-
tially over long timespans, although they can be “sticky”,
mimicking regular motion for extended time intervals. If
the Solar System is chaotic, even a tiny uncertainty in the
current orbits of the planets will make it impossible to pre-
dict their future evolution indefinitely.

One of the first indications that the Solar System is
chaotic came from an 845 Myr integration of the orbits of
the outer planets plus Pluto (Sussman and Wisdom1988).
Pluto was still considered a planet at the time due to its
grossly overestimated mass. This work showed that Pluto’s
orbit is chaotic with a Lyapunov timescale (TL = 1/Γ) of
20 My. Using a 200 Myr integration of the secular equa-
tions of motion,Laskar (1989) showed that the 8 major
planets are chaotic with a Lyapunov time of 5 My. This
result was later confirmed using fullN -body integrations
(Sussman and Wisdom1992). The source of the chaos is
due to the existence of two secular resonances, with fre-
quenciesν1 = 2(g4−g3)− (s4−s3) andν2 = (g1−g5)−
(s1 − s2), i.e. frequencies not appearing in the Lagrange-
Laplace theory (Laskar1990).

The four giant planets by themselves may be chaotic
(Sussman and Wisdom1992), due to a three-body reso-
nance involving Jupiter, Saturn and Uranus (Murray and Dermott
1999). Assuming that the evolution can be described as a
random diffusion through the chaotic phase space within
this resonance,Murray and Dermott(1999) estimated that
it will take ∼ 1018 y for Uranus’s orbit to cross those
of its neighbors. However, careful examination suggests
that chaotic and regular solutions both exist within the cur-
rent range of uncertainty for the orbits of the outer planets
(Guzzo2005;Hayes2008), so the lifetime of this subsystem
could be longer, and even infinite.

Numerical integrations can also be used to assess the
long-term stability of the planetary system, with the caveat
that the precise evolution can never be known, so that sim-
ulations provide only a statistical measure of the likely be-
havior. Numerical simulations confirm the expectation that
the orbits of the giant planets will not change significantly
over the lifetime of the Sun (Batygin and Laughlin2008).
Nonetheless, there remains a remote possibility that the or-
bits of the inner planets will become crossing on a timescale
of a few Gyr (Laskar 1994, 2008;Batygin and Laughlin
2008;Laskar and Gastineau2009).

In principle, if the terrestrial planets were alone in the
solar system, they would be stable for all time. (In practice,
of course, the Solar System architecture will change on a
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time scale of only∼ 7 Gyr due to solar evolution and mass
loss.) In fact, even if the orbits of the inner planets are free
to diffuse through phase space, their evolution would stillbe
constrained by their total energy and angular momentum.

A useful ingredient in orbital evolution is the angular
momentum deficit (AMD), given by

AMD ≡
∑

k

Λk

(

1− cos ik

√

1− e2k

)

(5)

whereΛk = MkM∗/(Mk +M∗)
√

G(M∗ +Mk)ak is the
angular momentum of planetk with massMk, semi-major
axisak, eccentricityek and inclinationik to the invariable
plane, andM∗ is the mass of the host star.

In absence of mean-motion resonances, to a good ap-
proximation,a remains constant for each planet, so AMD
is also constant (e.g.Laskar1997, though this result dates
to Laplace), Excursions ine andi are constrained by con-
servation of AMD, and the maximum values attainable by
any one planet occur when all the others havee = i = 0.
Mercury’s low mass means it can acquire a more eccentric
and inclined orbit than the other planets. However, even
when Mercury absorbs all available AMD, its orbit does
not cross Venus. However, when the giant planets are taken
into account, the exchange of a small amount of angular
momentum between the outer planets and the inner planets
can give the latter enough AMD to develop mutual crossing
orbits. As a result, long-term stability is not guaranteed.

The possible instability of the terrestrial planets on a
timescale of a few Gyr shows that the solar system has not
yet finished evolving dynamically. Its overall structure can
still change in the future, even if marginally within the re-
maining main-sequence lifetime of the Sun.

This potential change in the orbital structure of the plan-
ets would not be the first one in the history of the solar
system. In fact, several aspects of the current orbital archi-
tecture of the solar system suggest that the planetary orbits
changed quite drastically after the epoch of planet forma-
tion and the disappearence of the proto-planetary disk of
gas. For instance, as described above, the giant planets
are not in mean motion resonance with each other. How-
ever, their early interaction with the disk of gas in which
they formed could have driven them into mutual mean-
motion resonances such as the 1:2, 2:3 or 3:4, where the
orbital separations are much narrower than the current ones
(Lee and Peale2002; Kley et al. 2005; Morbidelli et al.
2007). We do indeed observe many resonant configura-
tions among extra-solar planetary systems, and in numer-
ical simulations of planetary migration. Also, the current
eccentricities and inclinations of the giant planets of the
solar system, even if smaller than those of many extra-solar
planets, are nevertheless non-zero. In a disk of gas, without
any mean-motion resonant interaction, the damping effects
would have annihilated the eccentricities and inclinations of
the giant planets in a few hundred orbits (Kley and Dirksen
2006; Cresswell et al.2007). So, some mechanism must
have extracted the giant planets from any original mean-

motion resonances and placed them onto their current, par-
tially eccentric and inclined orbits, after gas removal.

The populations of small bodies of the solar system also
attest to significant changes in the aftermath of gas re-
moval, and possibly several 100 Myr later. The existence
and properties of these populations thus provide important
constraints on our dynamical history (e.g., see Section 6).
There are three main reservoirs of small bodies: the as-
teroid belt between Mars and Jupiter, the Kuiper belt im-
mediately beyond Neptune and the Oort cloud at the out-
skirts of the solar system. At the present epoch, both the
asteroid belt and the Kuiper belt contain only a small frac-
tion of the mass (0.1% or less) that is thought to exist in
these regions when the large objects that we observe today
formed (Kenyon and Bromley2004). As a result, the vast
majority of the primordial objects (by number) have been
dynamically removed. Some of these bodies were incor-
porated into the forming planets, some were scattered to
other locations within the solar system, and some where
ejected. The remaining objects (those that make up the
current populations of the asteroid and Kuiper belts) are
dynamically excited, in the sense that their eccentricities
and inclinations cover the entire range of values allowed
by long-term stability constraints; for instance, the inclina-
tions can be as large as 40 degrees, much larger than the
nearly-co-planar orbits of the planets themselves. This ev-
idence suggests that some dynamical mechanism removed
more than 99.9% of the objects and left the survivors on ex-
cited orbits, much different from their original circular and
co-planar ones. Another constaint is provided by the ab-
sence of a correlation between the size of the objects and
their orbital excitation. Presumably, the mechanism that al-
tered the orbits of these small bodies actedafter the removal
of the nebular gas; otherwise, gas drag, which is notori-
ously a size-dependent process, would have imprinted such
a correlation. Similarly, the Oort cloud (the source of long
period comets) contains hundreds of billions of kilometer-
size objects, and most trace through orbits with high ec-
centricities and inclinations (Wiegert and Tremaine1999;
Kaib and Quinn2009). Since the Oort cloud extends far
beyond the expected size of circumstellar disks, the popu-
lation is thought to have been scattered to such large dis-
tances. In the presence of gas, however, these small ob-
jects could not have been scattered out by the giant planets,
because gas-drag would have circularized their orbits just
beyond the giant planets (Brasser et al.2007). Thus, pre-
sumably the formation of the Oort cloud post-dates gas re-
moval; this timing is consistent with considerations of the
Solar birth environment (Section 6).

Finally, there is evidence for a surge in the impact
rates and/or impact velocities on the bodies of the in-
ner solar system, including the terrestrial planets, the
Moon, and the asteroid Vesta (Tera et al.1974;Ryder2002;
Kring and Cohen2002;Marchi et al.2012a,b, 2013). This
surge seems to have occurred during a time interval rang-
ing from 4.1 to 3.8 Gyr ago, i.e., starting about 400 Myr
after planet formation. This event is often referred to as the
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“terminal Lunar Cataclysm” or the “Late Heavy Bombard-
ment”. If such a cataclysm really happened (its existence is
still debated today; see for instanceHartmann et al.2000),
it suggests that the changes in the structure of the solar sys-
tem described above did not happen immediately after the
removal of gas from the early solar nebula, but only after a
significant delay of several 100 Myr.

All of this discussion provides hints that the mechanisms
of orbital instability discussed in the next sections of this
chapter in the framework of extra-solar planets evolution
were probably not foreign to the solar system. Specifically,
a scenario of possible evolution of the solar system that ex-
plains all these aspects will be presented in Section 5.

3. INSTABILITIES IN TIGHTLY-PACKED SYS-
TEMS

We will see in this section that the timescale for plane-
tary system to become unstable is a very sensitive function
of planetary separations. Thus the separations of planets
within a system is an important quantity. Unfortunately,
the typical separation of planets in newly-formed planetary
systems is unknown observationally and theoretical pre-
dictions are also unclear. For terrestrial planets whose fi-
nal assembly occurs after gas disk dispersal, the results of
Kokubo and Ida(1998) suggest that separations of≃ 10
mutual Hill radii,Rhill,m are typical. Where1

Rhill,m ≡
(

Mk +Mk+1

3M∗

)1/3
ak + ak+1

2
(6)

HereM∗ is the stellar mass,Mk are the planetary masses,
andak the semi-major axes. However, terrestrial planets
that form more rapidly (i.e. before gas disk dispersal) may
be more tightly-packed, as may also be the case for gi-
ant planets that necessarily form in a dissipative environ-
ment. Giant planets (or their cores) can migrate due to ei-
ther planetesimal (Levison et al.2010) or gas disk interac-
tions (Kley and Nelson2012). Hydrodynamic simulations
of multiple planets interacting with each other and with a
surrounding gas disk (Moeckel et al.2008; Marzari et al.
2010;Moeckel and Armitage2012;Lega et al.2013) show
that resonant, tightly packed or well-separated systems can
form, but the probabilities for these channels cannot be pre-
dicted from first principles. Constraints on the dynamics
must currently be derived from comparison of the predicted
end states with observed systems.

For giant planets, two types of instability provide dy-
namical paths that may explain the origin of hot Jupiters
and eccentric giant planets. If the planets start on circular,
coplanar orbits,planet-planetscattering results in a com-
bination of physical collisions, ejection, and generationof
eccentricity. If the system instead forms with planets on
widely-separated eccentric or inclined orbits,secular chaos

1This is one definition of the mutual Hill radius; there are others in use in
the literature.

can result in the diffusive evolution of eccentricity to high
values even in the absence of close encounters.

3.1 Conditions and time scales of instability

The condition for stability can be analytically derived for
two planet systems.Gladman(1993), drawing on results
from Marchal and Bozis(1982) and others, showed that
two planet systems with initially circular and coplanar or-
bits are Hill stable for separations∆ ≡ (a2−a1)/Rhill,m &

2
√
3. Hill stability implies that two planets with at least

this separation are analytically guaranteed to never experi-
ence a close approach. Numerically, it is found that some
systems can be stable at smaller separations within mean
motion resonances, and that the stronger condition of La-
grange stability — which requires that both planets remain
bound and ordered for all time — requires only modestly
greater spacing than Hill stability (Barnes and Greenberg
2006b;Veras and Mustill2013).

There is no analytic criterion for the absolute stability
of systems withN ≥ 3 planets. The degree of insta-
bility can be characterized numerically by evaluating the
time scale for orbit crossing, or for the first close encoun-
ters between planets, to occur (in practice, different rea-
sonable definitions of “instability” are nearly equivalent).
Figure 1 illustrates the median instability time scale as a
function of the separation in units ofRhill,m for planetary
systems of three equal mass planets with varying mass ra-
tios µ = Mp/M∗. The behavior is simplest for low mass
planets. In this regime,Chambers et al.(1996) found that
the time before the first close encounters could be approx-
imated aslog(tclose) = b∆ + c, with b andc being con-
stants. The time to a first close encounter is found to vary
enormously over a small range of initial planetary sepa-
rations. Systems withN = 5 were less stable than the
N = 3 case, but there was little further decrease in the
stability time with further increase in the planet number to
N = 10 or N = 20. The scaling of the instability time
with separation was found to be mass dependent if mea-
sured in units ofRhill,m (with a steeper dependence for
largerµ), but approximatelyindependentif measured in
units∝ M

1/4
p . Smith and Lissauer(2009) extended these

results with longer integrations. They found that a single
slope provided a good fit to their data for Earth mass plan-
ets for3.5 ≤ ∆ ≤ 8, but that there was a sharp increase
in b for ∆ > 8. Sufficiently widely separated systems thus
rapidly become stable for practical purposes. As in the two
planet case, resonant systems can evade the non-resonant
stability scalings, but only for a limited number of planets
(Matsumoto et al.2012).

Similar numerical experiments for more massive planets
with µ ∼ 10−3 were conducted byMarzari and Weidenschilling
(2002) and byChatterjee et al.(2008). At these mass ra-
tios, the plot oftclose(∆) exhibits a great deal of structure
associated with the 2:1 (and to a lesser extent 3:1) mean-
motion resonance (Figure 1). A simple exponential fit is no
longer a good approximation for instability time scales of
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Fig. 1.— The median (triangles) instability time scale for initially circular, coplanar three planet systems, as a function of
the separation in units of mutual Hill radii (afterChambers et al.1996;Marzari and Weidenschilling2002). The dots show
the instability time scale obtained for individual realisations of a planetary system. The instability time scale is defined
as the time (in units of the initial orbital period of the inner planet) until the first pair of planets approach within one Hill
radius. From left to right, the panels show mass ratiosµ = Mp/M∗ of 10−6, 3× 10−5 and10−3.

106 − 108 yr (at a few AU) that might be highly relevant
for gas giants emerging from the gas disk.Chatterjee et al.
(2008) quote an improved fitting formula for the instability
time (valid away from resonances), but there is an unavoid-
able dependence on details of the system architecture such
as the radial ordering of the masses in systems with unequal
mass planets (Raymond et al.2010).

For a single planet, resonance overlap leads to chaos
and instability of test particle orbits out to a distance that
scales with planet mass as∆a ∝ µ2/7 for low eccentrici-
ties (Wisdom1980) and∆a ∝ µ1/5 above a (small) criti-
cal eccentricity (Mustill and Wyatt2012). Resonance over-
lap is similarly thought to underly the numerical results
for the stability time of multiple planet systems (Lissauer
1995; Morbidelli and Froeschĺe 1996), though the details
are not fully understood.Quillen (2011) considered the
criterion for the overlap of three-body resonances, finding
that the density of these resonances was (to within an or-
der of magnitude) sufficient to explain the origin of chaos
and instability at the separations probed numerically by
Smith and Lissauer(2009).

Once stars depart the main sequence, the increase inµ
as the star loses mass can destabilize either multiple planet
systems (Duncan and Lissauer1998;Debes and Sigurdsson
2002; Veras et al.2013; Voyatzis et al.2013), or asteroid
belts whose members are driven to encounter mean mo-
tion resonances with a single massive planet (Debes et al.
2012). These “late” instabilities may explain the origin of
metal-polluted white dwarfs, and white dwarfs with debris
disks.

3.2 Outcome of instability

The outcome of instability in tightly packed planetary
systems is a combination of ejections, physical collisions
between planets, and planet-star close approaches that may
lead to tidal dissipation or direct collision with the star.In

more widely spaced systems the same outcomes can oc-
cur, but chaotic motion can also persist indefinitely with-
out dramatic dynamical consequences. In the inner Solar
System, for example, the Lyapunov time scale is very short
(≃ 5 Myr), but the only known pathway to a planetary
collision — via the entry of Mercury into a secular reso-
nance with Jupiter — has a probability of onlyP ≈ 10−2

within 5 Gyr (Laskar 1989; Batygin and Laughlin2008;
Laskar and Gastineau2009).

During a close encounter between two planets, scattering
is statistically favored over collisions when the escape speed
from the planets’ surfaces is larger than the escape speed
from the planetary system (Goldreich et al.2004). This can
be quantified by the Safronov numberΘ:

Θ2 =

(

Mp

M⋆

)(

Rp

ap

)−1

(7)

whereMp, Rp andap represent the planet’s mass, radius,
and orbital distance, andM⋆ is the stellar mass (see dis-
cussion inFord and Rasio2008). We expect scattering to
be most important among massive, dense planets and in the
outer parts of planetary systems. In the Solar System, the
giant planets’ escape speeds are roughly 2-6 times larger
than the highest value for the terrestrial planets (Earth’s).
They are also at largerap.

Physical collisions lead to modest eccentricities for the
merged remnants (Ford et al. 2001). Scattering at orbital
radii beyond the snow line (a ≈ 3 AU), conversely, re-
sults in a broad eccentricity distribution consistent withthat
observed for massive extrasolar planets (Chatterjee et al.
2008; Jurić and Tremaine2008). Ejection proceeds via
scattering on to highly eccentric orbits, and hence a predic-
tion of planet-planet scattering models is the existence ofa
population of planets around young stars with very large or-
bital separation (Veras et al.2009;Scharf and Menou2009;
Malmberg et al.2011). The frequency of ejections from
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scattering is probably too small to explain the large abun-
dance of apparently unbound Jupiter-mass objects discov-
ered by microlensing (Sumi et al.2011), if those are to be
free-floating rather than simply on wide but bound orbits
(Veras and Raymond2012).

The outcome of instabilities that occur within the first
few Myr (or as the disk disperses) may be modified by
gravitational torques or mass accretion from the protoplane-
tary disk, while instabilities toward the outer edges of plan-
etary systems will result in interactions with outer plan-
etesimal belts.Matsumura et al.(2010), using N-body in-
tegrations coupled to a one dimensional gas disk model,
andMoeckel and Armitage(2012), using two dimensional
hydrodynamic disk models, found that realistic transitions
between gas-rich and gas-poor dynamics did not preclude
the generation of high eccentricities via scattering. Larger
numbers of resonant systems were, however, predicted.
Lega et al.(2013), instead, found that if a planetary system
becomes unstable during the gas-disk phase it is likely to
stabilize (after the ejection or the collision of some planets)
in resonant low-eccentricity orbits, and avoid further insta-
bilities after that the gas is removed.Raymond et al.(2010)
ran scattering experiments in which planets at larger radii
interacted with massive collision-less planetesimal disks.
The disks strongly suppressed the final eccentricities of
lower mass outer planetary systems.

3.3 Secular chaos

Significantly different evolution is possible in multiple
planet systems if one or more planets possess a substantial
eccentricity or inclination from thebeginning. The depar-
ture from circular coplanar orbits can be quantified by the
angular momentum deficit (AMD) defined earlier.

Wu and Lithwick(2011) proposed secular chaos (com-
bined with tidal effects) as the origin of hot Jupiters. They
presented a proof of concept numerical integration of a
widely separated (but chaotic) planetary system in which
most of the AMD initially resided in an eccentric (e ≈ 0.3)
outer gas giant (M = 1.5 MJ , a = 16 AU). Diffusion of
AMD among the three planets in the system eventually led
to the innermost planet attaininge ≃ 1 without prior close
encounters among the planets. They noted several charac-
teristic features of secular chaos as a mechanism for form-
ing hot Jupiters — it works best for low mass inner planets,
requires the presence of multiple additional planets at large
radii, and can result in star-planet tidal interactions that oc-
cur very late (in principle after Gyr).

The range of planetary systems for which secular chaos
yields dynamically interesting outcomes on short enough
time scales remains to be quantified. A prerequisite is a
large enough AMD in the initial conditions. This might
originate from eccentricity excitation of planets by the
gas disk (though this is unlikely to occur for low planet
masses, e.g.Papaloizou et al.2001;D’Angelo et al.2006;
Dunhill et al. 2013), from external perturbations such as
fly-bys (Malmberg et al.2011;Boley et al.2012), or from a

prior epoch of scattering among more tightly packed plan-
ets.

4. PLANET-PLANET SCATTERING CONSTRAINED
BY DYNAMICS AND OBSERVED EXOPLAN-
ETS

The planet-planet scattering model was developed to ex-
plain the existence of hot Jupiters (Rasio and Ford1996;
Weidenschilling and Marzari1996) and giant planets on
very eccentric orbits (Lin and Ida1997;Papaloizou and Terquem
2001;Ford et al.2001). Given the great successes of exo-
planet searches there now exists a database of observations
against which to test the planet-planet scattering model.
The relevant observational constraints come from the subset
of extra-solar systems containing giant planets. In this Sec-
tion we first review the relevant observational constraints.
Next, we show how the dynamics of scattering depends
on the parameters of the system. We then show that, with
simple assumptions, the scattering model can match the
observations.

4.1 Constraints from Giant Exoplanets

The sample of extra-solar planets that can directly con-
strain models of planet-planet scattering now numbers more
than 300. These are giant planets with masses larger than
Saturn’s and smaller than13MJup (Wright et al. 2011;
Schneider et al.2011) with orbital semimajor axes larger
than 0.2 AU to avoid contamination from star-planet tidal
circularization.

The giant planets have a broad eccentricity distri-
bution with a median of∼ 0.22 (Butler et al. 2006;
Udry and Santos2007). There are a number of planets
with very eccentric orbits: roughly 16% / 6% / 1% of the
sample has eccentricities larger than 0.5 / 0.7 / 0.9.

More massive planets have more eccentric orbits. Gi-
ant exoplanets with minimum massesMp > MJup have
statistically higher eccentricities (as measured by a K-S
test) than planets withMp < MJup (Jones et al.2006;
Ribas and Miralda-Escud́e 2007; Ford and Rasio 2008;
Wright et al. 2009). Excluding hot Jupiters, there is no
measured correlation between orbital radius and eccentric-
ity (Ford and Rasio2008).

Additional constraints can be extracted from multiple
planet systems. For example, the known two-planet sys-
tems are observed to cluster just beyond the Hill stabil-
ity limit ( Barnes and Greenberg2006a; Raymond et al.
2009b). However, it’s unclear to what extent detection
biases contribute to this clustering. In addition, stud-
ies of the long-term dynamics of some well-characterized
systems can constrain their secular behavior, and several
systems have been found very close to the boundary be-
tween apsidal libration and circulation (Ford et al. 2005;
Barnes and Greenberg2006b;Veras and Ford2009).

Often, there are significant uncertainties associated
with the observations (Ford 2005). Orbital eccentrici-
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ties are especially hard to pin down and the current sam-
ple may be modestly biased toward higher eccentrici-
ties (Shen and Turner2008; Zakamska et al.2011), al-
though it is clear that with their near-circular orbits the
Solar System’s giant planets are unusual in the context of
giant exoplanets.

4.2 Scattering Experiments: Effect of System Parame-
ters

We now explore how the dynamics and outcomes of
planet-planet scattering are affected by parameters of the
giant planets, in particular their masses and mass ratios.
Our goal is to understand what initial conditions are able
to match all of the observed constraints from Section 4.1.

During a close gravitational encounter, the magnitude
of the gravitational kick that a planet imparts depends on
the planet’s escape speed. To be more precise, what is
important is the Safronov numberΘ, as given in Equa-
tion (7). At a given orbital distance, more massive plan-
ets kick harder, i.e. they impart a stronger change in ve-
locity. Within systems with a fixed number of equal-mass
planets, more massive systems evolve more quickly be-
cause they require fewer close encounters to give kicks
equivalent to reaching zero orbital energy and being lib-
erated from the system. The duration of an instability –
the time during which the planets’ orbits cross – is thus
linked to the planet masses. For example, in a set of simu-
lations with three planets at a few to 10 AU, systems with
Mp = 3MJup planets underwent a median of 81 scatter-
ing events during the instability, but this number increased
to 175, 542, and 1871 forMp = MJup,MSat, and30M⊕,
respectively (Raymond et al.2010). The instabilities lasted
104 − 106 years; longer for lower-mass planets.

Thus, the timescale for orbital instabilities in a system
starts off longer than the planet formation timescale and
decreases as planets grow their masses. The natural out-
come of giant planet formation is a planetary system with
multiple giant planets which undergo repeated instabilities
on progressively longer timescales, until the instabilitytime
exceeds the age of the system.

The orbits of surviving planets in equal-mass systems
also depend on the planet mass. Massive planets end up
on orbits with larger eccentricities than less massive plan-
ets (Ford et al. 2003; Raymond et al.2008, 2009a, 2010).
This is a natural consequence of the stronger kicks deliv-
ered by more massive planets. However, the inclinations of
surviving massive planets are smaller than for less massive
planets in terms of both the inclination with respect to the
initial orbital plane (presumably corresponding to the stel-
lar equator) and the mutual inclination between the orbits
of multiple surviving planets (Raymond et al.2010). This
increase in inclination appears to be intimately linked with
the number of encounters the planets have experienced in
ejecting other planets rather than their strength.

The planetary mass ratios also play a key role in the
scattering process. Scattering between equal-mass plan-
ets represents the most energy-intensive scenario for ejec-

tion. Since it requires far less energy to eject a less massive
planet, the recoil that is felt by the surviving planets is much
less. Thus, the planets that survive instabilities between
unequal-mass planets have smaller eccentricities and incli-
nations compared with the planets that survive equal-mass
scattering (Ford et al. 2003; Raymond et al.2008, 2010,
2012). This does not appear to be overly sensitive to the
planets’ ordering, i.e. if the lower-mass planets are located
on interior or exterior orbits (Raymond et al.2010).

The timing of the instability may also be important for
the outcome because giant planets cool and contract on
107−8 year timescales (Spiegel and Burrows2012). Thus,
the planets’ escape speeds andΘ values increase in time.
Instabilities that occur very early in planetary system histo-
ries may thus be less efficient at ejecting planets and may
include a higher rate of collisions compared with most scat-
tering calculations to date.

4.3 Scattering Experiments: Matching Observations

Let us consider a simple numerical experiment where
all planetary systems containing giant planets are assumed
to form three giant planets. The masses of these plan-
ets follow the observed mass distributiondN/dM ∝
M−1.1 (Butler et al.2006;Udry and Santos2007) and the
masses within a system are not correlated. All systems be-
come unstable and undergo planet-planet scattering. With
no fine tuning, the outcome of this experiment matches the
observed eccentricity distribution (Raymond et al.2008).

The exoplanet eccentricity distribution can be repro-
duced with a wide range of initial conditions (Adams and Laughlin
2003; Moorhead and Adams2005; Jurić and Tremaine
2008;Chatterjee et al.2008;Ford and Rasio2008;Raymond et al.
2010;Beauǵe and Nesvorńy 2012). The same simulations
also reproduce the dynamical quantities that can be inferred
from multiple-planet systems: the distribution of parame-
terized distances of two-planet systems from the Hill stabil-
ity limit ( Raymond et al.2009b) and the secular configura-
tion of two-planet systems (Timpe et al.2012).

Certain observations are difficult to reproduce. Some ob-
served systems show no evidence of having undergone an
instability (e.g. as they contain multiple giant planets on
near-circular orbits or those in resonances). The scattering
model must thus be able to reproduce the observed distri-
butions including a fraction of systems remaining on stable
orbits. The fraction of systems that are stable is typically
10-30%, where assumptions are made about the distribution
of planetary masses and orbits (Jurić and Tremaine2008;
Raymond et al.2010, 2011). One should also note that mi-
gration is required in order to match the observed distri-
bution of semi-major axes, in other words scattering alone
cannot transport Jupiter-like planets on Jupiter-like orbits to
semi-major axes less than one AU (Moorhead and Adams
2005).

Perhaps the most difficult observation to match is the
observed positive correlation between planet mass and
eccentricity. In the simulations from the simple ex-
periment mentioned above, lower-mass surviving plan-

8



ets actually have higher eccentricities than more massive
ones (Raymond et al.2010). For massive planets to have
higher eccentricities they must form in systems with other
massive planets, since scattering among equal-mass mas-
sive planets produces the highest eccentricities. This is in
agreement with planet formation models: when the condi-
tions are ripe for giant planet formation (e.g. massive disk,
high metallicity), one would expect all giants to have high
masses, and vice versa.

It is relatively simple to construct a population of sys-
tems that can reproduce the observed eccentricity distribu-
tion as well as the mass-eccentricity correlation and also the
mass distribution. The population consists of equal-mass
high-mass systems and a diversity of lower-mass systems
that can include unequal-mass systems or equal-mass ones.
This population also naturally reproduces the observed dis-
tribution of two-planet systems which pile up close to the
Hill stability limit (as shown in Figure 2).

We conclude this section with a note of caution. Given
the observational uncertainties and the long list of sys-
tem parameters, to what degree can our understanding of
planet-planet scattering constrain pre-instability planetary
systems? The scattering mechanism is robust and can re-
produce observations for a range of initial conditions. Be-
yond the limitations of mass, energy and angular momen-
tum conservation, the details of pre-scattered systems re-
main largely hidden from our view. The only constraint
that appears to require correlated initial conditions to solve
is the mass-eccentricity correlation.

Finally, planet-planet scattering does not happen in iso-
lation but rather affects the other components of plane-
tary systems. Giant planet instabilities are generally de-
structive to both inner rocky planets (Veras and Armitage
2005, 2006;Raymond et al.2011, 2012;Matsumura et al.
2013) and to outer planetesimal disks (Raymond et al.
2011, 2012;Raymond and Armitage2013). Additional
constraints on giant planet dynamics may thus be found in
a number of places. Recent discoveries by the Kepler Mis-
sion of Earth and super-Earth-size planets relatively close
to their host star reveal only a small fraction with giant
planets orbiting nearby (Lissauer et al.2011;Ciardi et al.
2013). Multiple systems also appear to be rather flat
and stable to planet-planet interactions (Lissauer et al.
2011; Tremaine and Dong2012; Johansen et al.2012;
Fang and Margot2012a).

Characterizing the relationship between small planets
orbiting close to the host star and more massive planets
at larger separations could provide insights into the ef-
fects of planet scattering on the formation of inner, rocky
planets. Similarly, the abundance and mass distribution
of planets with large orbital separations (Malmberg et al.
2011; Boley et al.2012) or free-floating planets may pro-
vide insights into the planets that are scattered to the out-
skirts of planetary systems or into the galaxy as free-
floating planets (Veras and Ford2009; Veras et al.2011;
Veras and Raymond2012;Veras and Mustill2013). In ad-
dition, the fact that planet-planet scattering perturbs both

the inner and outer parts of planetary systems may intro-
duce a natural correlation between the presence of debris
disks and close-in low-mass planets, as well as an anti-
correlation between debris disks and eccentric giant plan-
ets (Raymond et al.2011, 2012;Raymond and Armitage
2013).

5. PLANETS AND PLANETESIMAL DISKS

This section considers the evolution of planetary orbits
due to interactions with planetesimal disks. These disks are
likely to remain intact after the gaseous portion of the disk
has gone away, i.e., for system ages greater than 3–10 Myr,
and will continue to evolve in time. Such planetesimal disks
are likely to be most effective during the subsequent decade
of time, for system ages in the range 10–100 Myr. One of
the main effects of a residual planetesimal disk is to drive
planetary migration. The subsequent changes in the orbital
elements of the planets can cause instabilities (e.g. induced
by resonance crossing or by the extraction of the planets
from their original resonances), and such action can drive
orbital eccentricities to larger values. On the other hand,
planetesimal disks can also damp orbital eccentricity and
thereby act to stabilize planetary systems.

We begin with a brief overview of the basic properties of
planetismal disks. Unfortunately, we cannot observe plan-
etesimal disks directly. Instead, we can piece together an
understanding of their properties by considering protoplan-
etary disks around newly formed stars (see the review of
Williams and Cieza2011) and debris disks (see the reviews
of Zuckerman2001;Wyatt2008). These latter systems rep-
resent the late stages of circumstellar disk evolution, after
the gas has been removed, either by photoevaporation or by
accretion onto the central star (see the chapter byAlexander
et al. for more details of the photoevaporation process).

Most of the observational information that we have con-
cerning both types of disks is found through their spectral
energy distributions (SEDs), especially the radiation emit-
ted at infrared wavelengths. Since these SEDs are primarily
sensitive to dust grains, rather than the large planetesimals
of interest here, much of our information is indirect. The
defining characteristic of debris disks is their fractionallu-
minosityf , essentially the ratio of power emitted at infrared
wavelengths to the total power of the star itself. True de-
bris disks are defined to havef < 10−2 (Lagrange et al.
2000), whereas systems with larger values off are con-
sidered to be protoplanetary disks. For both types of sys-
tems, the observed fluxes can be used to make disk mass
estimates. The results show that the disk masses decrease
steadily with time. For young systems with ages∼ 1 Myr,
the masses in solid material are typicallyMd ∼ 100M⊕,
albeit with substantial scatter about this value. Note that
this amount of solid material is not unlike that of the Min-
imum Mass Solar/Extrasolar Nebula (e.g.Weidenschilling
1977;Kuchner2004;Chiang and Laughlin2013). By the
time these systems reach ages of∼ 100 Myr, in the inner
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Fig. 2.— A comparison between observed properties of giant exoplanets (shown in gray) and planet-planet scattering
simulations (in black). Left: the eccentricity distribution. Middle: the eccentricity distribution for low-mass (dashed
curves) and high-mass (solid curves) planets. Right: The proximity to the Hill stability limit, measured by the quantity
β/βcrit (Barnes and Greenberg2006b;Raymond et al.2009b) where the stability limit occurs atβ/βcrit = 1 and systems
with larger values ofβ/βcrit are stable.

part of the disk the masses have fallen to only∼ 0.01M⊕

(see Figure 3 ofWyatt 2008). Note that these mass esti-
mates correspond to the material that is contained in small
dust grains; some fraction of the original material is thought
to be locked up in larger bodies – the planetesimals of inter-
est here. As a result, the total mass of the planetesimal disk
does not necessarily fall as rapidly with time as the SEDs
suggest.

At large distances from the star, instead, the decay of
the mass of the dust population is much slower, suggesting
that belts containing tens of Earth masses can exist around
Gyr-old stars (Booth et al.2009).

For a given mass contained in the planetesimal disk, we
expect the surface density of solid material to initially fol-
low a power-law form so thatσ ∝ r−p, where the index
p typically falls in the approximate range1/2 ≤ p ≤ 2
(Cassen and Moosman1981). The disks are initially ex-
pected to have inner edges where the protoplanetary disks
are truncated by magnetic fields, where this boundary oc-
curs atr ∼ 0.05 AU. Similarly, the outer boundaries are
initially set by disk formation considerations. The an-
gular momentum barrier during protostellar collapse im-
plies that disks start with outer radiird ∼ 10 − 100 AU
(Cassen and Moosman1981;Adams and Shu1986). Fur-
ther environmental sculpting of disks (see Section 6 below)
reinforces this outer boundary. The properties outlined here
apply primarily to the starting configurations of the plan-
etesimal disks. As the disks evolve, and interact with plan-
ets, the surface density must change accordingly.

Given the properties of planetesimal disks, we now con-
sider how they interact with planets and drive planetary mi-
gration. The physical mechanism by which planetesimals
lead to planet migration can be roughly described as fol-
lows (see, e.g.,Levison et al.2007): Within the disk, as

the planetesimals gravitationally scatter off the planet,the
larger body must recoil and thereby change its trajectory.
Since the planet resides within a veritable sea of planetesi-
mals, the smaller bodies approach the larger body from all
directions, so that the momentum impulses felt by the planet
are randomly oriented. As a result, the orbital elements of
the planet will experience a random walk through parame-
ter space. In particular, the semi-major axis of the planetary
orbit will undergo a random walk. If the random walk is
perfectly symmetric, then the planet has equal probability
of migrating inward or outward; nonetheless, changes will
accumulate (proportional to the square root of the number
of scattering events). In practice, however, many factors
break the symmetry (e.g., the surface density of solids gen-
erally decreases with radius) and one direction is preferred.

The details of planetary migration by planetesimal disks
depend on the specific properties of the planetary system,
including the number of planets, the planet masses, their
separations, the radial extent of the disk, and of course the
total mass in planetesimals. In spite of these complications,
we can identify some general principles that guide the evo-
lution. Some of these are outlined below:

We first note that a disk of planetesimals containing plan-
ets often evolves in what can be called a “diffusive regime”,
where many small scattering events act to make the orbital
elements of both the planets and the planetesimals undergo
a random walk. As a result, the system has the tendency
to spread out. This behavior is often seen in numerical
simulations. For a system consisting of a disk of plan-
etesimals and analogs of the four giant planets in our So-
lar System, the scattering events in general lead to Jupiter
migrating inward and the remaining three planets migrat-
ing outward (Fernandez and Ip1984; Hahn and Malhotra
1999; Gomes et al.2004) Similarly, in numerical simula-
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Fig. 3.— Orbital evolution of the four giant planets in our Solar System according to the Nice model. Here, each planet is
represented by two curves, denoting perihelion and aphelion distance. Hence, when the curves overlap the orbit is circular.
The region spanned originally by the planetesimal disk of 50Earth masses is shown as a grey area. Notice that the planetary
system becomes unstable att = 762 Myr in this simulation with the planetary orbits changing radically at this point (data
from Levison et al.2011).

tions of systems with two planets embedded in a disk of
planetesimals, the inner planet often migrates inward, while
the outer planet migrates outward (Levison et al.2007). In-
stead, a single planet in a planetesimal disk, in general mi-
grates inwards (Kirsh et al.2009). This can be understood
using some considerations concerning energy conservation.
For a system made of a planet and a disk of planetesimals
energy is conserved until planetesimals are lost. Planetes-
imals can be lost by collisions with the planet, collisions
with the Sun or ejection onto hyperbolic orbit. In the case
where the latter is the major loss mechanism, which hap-
pens if the planet is massive and the disk is dynamically
excited, the removed planetesimals subtract energy to the
system of bodies remaining in orbit around the star. Conse-
quently, most of the mass has to move inward and the planet
has to follow this trend. Given the expected total masses
in planetesimals (see the above discussion), this mode of
migration cannot change the semimajor axis of a planetary
orbit by a large factor. In particular, this mechanism is un-
likely to produce Hot Jupiters with periods of about four
days and therefore these planets have to form by a differ-
ent mechanism (migration in a disk of gas or planet-planet
scattering and tidal damping).

Finally, we note that the effects discussed above can be
modified in the early phases of evolution by the presence of
a gaseous component to the disk (Capobianco et al.2011).
For instance, planetesimals scattered inwards by the planet
may have their orbits circularized by gas drag, so that they
cannot be scattered again by the planet. Consequently, the
trend is that the planetesimal population loses energy and
the planet has to migrate outwards.

Planetary migration enforced by the scattering of plan-
etesimals will produce a back reaction on the disk. As

outlined above, the disk will tend to spread out, and some
planetesimals are lost by being scattered out of the system.
Both of these effects reduce the surface density in planetes-
imals. In addition, the planets can create gaps in the disk of
planetesimals. These processes are important because they
are potentially observable with the next generation of inter-
ferometers (ALMA). We note, however, that submillimeter
(and millimeter wave) observations are primarily sensitive
to dust grains rather than planetesimals themselves. The
stirring of the planetesimal disk by planets can lead to plan-
etesimal collisions and dust production, thereby allowing
these processes to be observed.

Since planetesimal disks are likely to be present in most
systems, it is interesting to consider what might have oc-
curred in the early evolution of our own Solar System. Here
we follow the description provided by the so-called “Nice
model”. As described in Section 2, it is expected that, at the
end of the gas-disk phase, the giant planets were in a chain
of resonant (or nearly resonant) orbits, with small eccentric-
ities and inclinations, and narrow mutual separations. These
orbital configurations are those that are found to reach a
steady-state, and hence are used as the initial condition for
the Nice model (Morbidelli et al. 2007). The model also
assumes that beyond the orbit of Neptune there was a plan-
etesimal disk, carrying cumulatively approximately 30-50
Earth masses. A disk in this mass range is necessary to al-
low the giant planets to evolve from their original, compact
configuration to the orbits they have today. More specifi-
cally, the perturbations between the planets and this disk,
although weak, accumulated over time and eventually ex-
tracted a pair of planets from their resonance. The break-
ing of the resonance lock makes the planetary system un-
stable. After leaving resonance, the planets behave as de-
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scribed in Sections 3 and 4, and as shown in Figure 3.
Their mutual close encounters act to spread out the plane-
tary system and to excite the orbital eccentricities and incli-
nations. In particular, this model suggests that Uranus and
Neptune got scattered outwards by Jupiter and Saturn, pen-
etrated into the original trans-Neptunian disk and dispersed
it. The dispersal of the planetesimal disk, in turn, damped
the orbital eccentricities of Uranus and Neptune (and to a
lesser extent those of Jupiter and Saturn), so that the four
giant planets eventually reached orbits analogous to the cur-
rent ones (Morbidelli et al.2007;Batygin and Brown2010;
Batygin et al.2012;Nesvorńy and Morbidelli2012).

In addition to the current orbits of the giant planets,
the Nice model accounts for the properties of the small
body populations which, as we described in Section 3, sug-
gest that the structure of the solar system experienced dra-
matic changes after gas dissipation. In fact, the model
has been shown to explain the structure of the Kuiper belt
(Levison et al.2008;Batygin et al.2011), the asteroid belt
(Morbidelli et al. 2010), and even the origin of the Oort
cloud (Brasser and Morbidelli2013). Moreover, it has
been shown that, with reasonable assumptions concerning
the planetesimal disk, the instability of the planetary or-
bits could occur after hundreds of Myr of apparent stabil-
ity (Tsiganis et al.2005;Gomes et al.2005;Levison et al.
2011); the subsequent epoch of instability could excite the
orbits of the small bodies and thereby produce a shower
of projectiles into the inner solar system that quantita-
tively explains the origin of the Late Heavy Bombardment
(Bottke et al.2012).

At the present time, there are no gross characteristics
of the Solar System that are at odds with the Nice model.
Nevertheless, some aspects of the general picture associ-
ated with the model need to be revised or explored. For
instance, the cold population (which is a sub-population of
the Kuiper belt characterized by small orbital inclinations)
probably formed in-situ (Parker and Quanz2012) instead
of being implanted from within∼ 30 AU as envisioned
in Levison et al.(2008). Also, Nesvorńy and Morbidelli
(2012) showed that the current orbits of the planets are
better reproduced if one postulates the existence of a fifth
planet with a mass comparable to those of Uranus and Nep-
tune, eventually ejected from the Solar System. However, it
has not yet been shown that a 5-planet system can become
unstable late, the work ofLevison et al.(2011) having been
conducted in the framework of a 4-planet system. These is-
sues, however, are unlikely to invalidate the Nice model as
a whole.

It may be surprising that the current eccentricities and
inclinations of the giant planets of our solar system can be
so much smaller than those of many extra-solar planets, es-
pecially if they experienced a similar phase of global in-
stability (see Sections 3 and 4). There are two main rea-
sons for this result. First, the “giant” planets of our so-
lar system have masses that are significantly smaller than
those of many extra-solar giant planets. This lower (to-
tal) mass made the instability less violent and allowed the

orbits of our giant planets to be damped more efficiently
by interactions with the planetesimal disk (Raymond et al.
2009a). This trend is particularly appplicable for Uranus
and Neptune: Their eccentricities could be damped from
more than 0.5 to almost zero by the dispersal of the plan-
etesimal disk, which is assumed to carry about twice the
sum of their masses. Second, Jupiter and Saturn fortu-
itously avoided having close encounters with each other
(whereas they both had, according to the Nice model, en-
counters with a Neptune-mass planet). In fact, in the sim-
ulations of solar system instability where Jupiter and Sat-
urn have a close encounter with each other, Jupiter typ-
ically ends up on an orbit with eccentricity in the range
e = 0.3 − 0.4 (typical of many extra-solar planets) and
recoils to 4.5 AU, while all of the other planets are ejected
from the system.

6. DYNAMICAL INTERACTIONS OF PLANETARY
SYSTEMS WITHIN STELLAR CLUSTERS

In this section we consider dynamical interactions be-
tween the constituent members of young stellar clusters
with a focus on the consequent effects on young and form-
ing planetary systems.

Most stars form within some type of cluster or associ-
ation. In order to quantify the resulting effects on plane-
tary systems, we first consider the basic properties of these
cluster environments. About 10 percent of the stellar pop-
ulation is born within clusters that are sufficiently robust
to become open clusters, which live for 100 Myr to 1 Gyr.
The remaining 90 percent of the stellar population is born
within shorter-lived cluster systems that we call embedded
clusters. Embedded clusters become unbound and fall apart
when residual gas is ejected through the effects of stel-
lar winds and/or supernovae. This dispersal occurs on a
timescale of∼ 10 Myr.

Open clusters span a wide range of masses, or, equiv-
alently, number of members. To leading order, the clus-
ter distribution functionfcl ∼ 1/N2 over a range fromN
= 1 (single stars) toN = 106 (this law requires combin-
ing data from different sources, e.g.,Lada and Lada2003;
Chandar et al.1999). With this distribution, the probabil-
ity that a star is born within a cluster of sizeN scales as
P = Nfcl ∼ 1/N , so that the cumulative probability
∝ logN . In other words, stars are equally likely to be born
within clusters in each decade of stellar membership sizeN .
For the lower end of the range, clusters have radii of orderR
= 1pc, and the cluster radius scales asR ≈ 1pc(N/300)1/2,
so that the clusters have (approximately) constant column
density (Lada and Lada2003;Adams et al.2006). For the
upper end of the range, this law tends to saturate, so that the
more-massive clusters are denser than expected from this
law. Nonetheless, a typical mean density is only about 100
stars/pc3. Clusters having typical masses and radii have ve-
locity dispersions∼ 1 km/s.

Dynamical interactions within clusters are often sub-
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ject to gravitational focussing. In rough terms, focusing
becomes important when the encounter distance is small
enough that the speed of one body is affected by the poten-
tial well of the other body. For a typical velocity dispersion
of 1 km/s, and for solar-type stars, this critical distance is
about 1000 AU. As outlined below, this distance is compa-
rable to the closest expected encounter distance for typical
clusters. As a result, gravitational focusing is important–
but not dominant – in these systems.

The timescale for a given star to undergo a close en-
counter (where gravitational focusing is important) with an-
other star within a distancermin can be approximated by
(Binney and Tremaine1987)

τenc ≃ 3.3× 107yr

(

100 pc−3

n

)(

v∞
1 km/s

)

×
(

103AU

rmin

)(

M⊙

M

)

(8)

Heren is the stellar number density in the cluster,v∞ is
the mean relative speed at infinity of the stars in the cluster,
rmin is the encounter distance, andM is the total mass of
the stars involved in the encounter. The effect of gravita-
tional focussing is included in the above equation.

The estimate suggested above is verified by numeri-
cal N-body calculations, which determine a distribution of
close encounters (e.g.,Adams et al.2006;Malmberg et al.
2007b;Proszkow and Adams2009). These studies show
that the distribution has a power-law form so that the rate
Γ at which a given star encounters other cluster members at
a distance of closest approach less thanb has the formΓ =
Γ0(b/b0)

γ , where(Γ0, γ) are constants andb0 is a fiducial
value. The indexγ < 2 is due to gravitational focusing.
Typical encounter rates are shown in Figure 4 for clusters
with N = 100, 300, and 1000 members. With this power-
law form for the distribution, the expectation value for the
closest encounter experienced over a 10 Myr time span is
about〈b〉 ≈ 1000 AU. The initial conditions in a cluster
can have an important effect on the subsequent encounter
rates. In particular, sub-virial clusters which contain signif-
icant substructure (i.e., lumps) will have higher encounter
rates (Allison et al.2009;Parker and Quanz2012, see also
Figure 4).

Planetary systems are affected by passing stars and
binaries in a variety of ways (e.g.,Laughlin and Adams
1998; Adams and Laughlin2001; Bonnell et al. 2001;
Davies and Sigurdsson2001;Adams et al.2006;Malmberg et al.
2007b; Malmberg and Davies2009; Spurzem et al.2009;
Malmberg et al.2011;Hao et al.2013). Sufficiently close
encounters can eject planets, although the cross sections for
direct ejections are relatively small and can be written in
the form (fromAdams et al.2006):

Σej ≈ 1350(AU)2
(

M∗

1M⊙

)−1/2
( ap
1AU

)

(9)

whereM∗ is the mass of the planet-hosting star andap is
the (starting) semimajor axis of the planet. Note that the

Fig. 4.— Distribution of closest approaches for the solar
systems in young embedded clusters. Each panel shows the
distribution of closest approaches, plotted versus approach
distanceb, for clusters with both virial (bottom) and sub-
virial (top) starting conditions. Results are shown for clus-
ters withN = 100, 300, and 1000 members, as labeled. The
error bars shown represent the standard deviation over the
compilations (Figure 5 ofAdams et al.2006, reproduced
by permission of the AAS).

cross section scales as one power ofap (instead of two) due
to gravitational focusing.

Note that Equation (9) provides the cross section for di-
rect ejection, where the planet in question leaves its star
immediately after (or during) the encounter. Another class
of encounters leads to indirect ejection. In this latter case,
the fly-by event perturbs the orbits of planets in a multiple
planet system, and planetary interactions later lead to the
ejection of a planet. Typical instability timescales lie inthe
range 1 – 100 Myr (e.g.,Malmberg et al.2011, see their
Figure 7), although a much wider range is possible. On
a similar note, ejection of Earth from our own Solar Sys-
tem is more likely to occur indirectly through perturbations
of Jupiter’s orbit (so that Jupiter eventually drives the ejec-
tion of Earth), rather than via direct ejection from a passing
star (Laughlin and Adams2000). Planetary systems resid-
ing in wide stellar binaries in the field of the Galaxy are
also vulnerable to external perturbations. Passing stars and
the Galactic tidal field can change the stellar orbits of wide
binaries, making them eccentric, leading to strong interac-
tions with planetary systems (Kaib et al.2013).
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Although direct planetary ejections due to stellar en-
counters are relatively rare, such interactions can nonethe-
less perturb planetary orbits, i.e., these encounters can
change the orbital elements of planets. Both the eccen-
tricity and the inclination angles can be perturbed substan-
tially, and changes in these quantities are well correlated
(Adams and Laughlin2001) As one benchmark, the cross
section for doubling the eccentricity of Neptune in our so-
lar system is aboutΣ ≈ (400 AU)2; the cross section for
increasing the spread of inclination angles in our solar sys-
tem to 3.5 degrees has a similar value. Note that these cross
sections are much larger than the geometric cross sections
of the Solar System. The semi-major axes are also altered,
but generally suffer smaller changes in a relative sense, i.e.,
(∆a)/a ≪ (∆e)/e.

Some time after fly-by encounters, the orbital elements
of planetary systems can be altered significantly due to the
subsequent planet-planet interactions (see Figure 10 from
Malmberg et al.2011). When a planetary system becomes
unstable, planets may be ejected via scattering with other
planets. However, planets are often ejected as the result of
several (many tens to one hundred) scattering events, with
each scattering event making the planet slightly less bound
to the host star. As a result, snapshots of planetary sys-
tems taken some time after the initial fly-by sometimes re-
veal planets on much wider (less bound) orbits with sepa-
rations in excess of 100 AU. In Figure 5 we plot the frac-
tion of post-fly-by systems containing planets on orbits with
semi-major axesa > 100 AU as a function of time after
the fly-by encounters. This trend is found both in systems
made unstable by fly-bys and those that become unstable
without external influence, as described earlier in Section3
(Scharf and Menou2009;Veras et al.2009).

Planets on such wide orbits should be detectable via di-
rect imaging campaigns; thus the fraction of stars possess-
ing them will place limits on the population of unstable
planetary systems.

During fly-by encounters, intruding stars can also pick
up planets from the planetary system (see Figure 12 of
Malmberg et al.2011). Clusters thus provide rich environ-
ments that can shape the planetary systems forming within
them. In particular, if the intruding star already possesses
its own planetary system, the addition of the extra planet
may destabilize the system.

By combining encounter rates for planetary systems
in clusters with cross sections that describe the various
channels of disruption, we can estimate the probability
(equivalently, the perturbation rate) that a planetary sys-
tem will suffer, e.g., the ejection of at least one planet
over a given time interval (seeLaughlin and Adams1998;
Malmberg et al. 2011). By combining the cross sec-
tion for planetary ejection with the encounter histories
found through N-body simulations of stellar clusters, one
finds that planets will be ejected in approximately five
to ten percent of planetary systems in long-lived clusters
(Malmberg et al.2011). The number of planets ejected
directly during fly-bys will be somewhat lower: For ex-

Fig. 5.— The fraction of solar systemsf(t) containing
planets with semi-major axes greater than 100 AU, plot-
ted here as a function of timet after a close encounter for
intruder stars of masses 0.6, 1.0 and 1.5 M⊙. These sim-
ulations of fly-bys involve the four gas giants of the solar
system withrmin < 100 AU (Figure 11 ofMalmberg et al.
2011, reproduced by permission of RAS).

ample, only a few planets are expected to be ejected per
(young) embedded cluster. As a result, large numbers of
free-floating planets in young clusters point to other mech-
anisms for ejection, most likely planet-planet interactions
in young planetary systems (Moorhead and Adams2005;
Chatterjee et al.2008). One should also note that dynami-
cal mechanisms are unlikely to be able to explain the pop-
ulation of free-floating planets as inferred by micro-lensing
observations (Veras and Raymond2012).

Encounters involving binary stars also play an impor-
tant role in the evolution of planetary systems residing in
stellar clusters. A star that hosts a planetary system may
exchange into a (wide) binary. If its orbit is sufficiently
inclined, the stellar companion can affect planetary orbits
via the Kozai mechanism (see also Section 7). These in-
teractions force planets onto eccentric orbits that can cross
the orbits of other planets, and can thereby result in strong
planetary scatterings (Malmberg et al.2007a). The rate
of such encounters depends on the binary population, but
Kozai-induced scattering may account for the destruction
of at least a few percent of planetary systems in clusters
(Malmberg et al.2007b).

For completeness, we note that dynamical interactions
can also affect circumstellar disks, prior to the formation
of planetary systems. In this earlier phase of evolution,
the disks are subject to truncation by passing stars. As
a general rule, the disks are truncated to about one third
of the distance of closest approach (Ostriker 1994;Heller
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1995); with the expected distribution of interaction dis-
tances, we expect disks to be typically truncated to about
300 AU through this process, although closer encounters
will lead to smaller disks around a subset of stars. Since
most planet formation takes place at radii smaller than 300
AU, these interactions have only a modest effect. In a sim-
ilar vein, circumstellar disks can sweep up ambient gas
in the clusters through Bondi-Hoyle accretion. Under fa-
vorable conditions, a disk can gain a mass equivalent to
the minimum mass solar nebula through this mechanism
(Throop and Bally2008).

The orientations of circumstellar disks can also be al-
tered by later accretion of material on the disks and by in-
teractions with other stars within clustered environments
(Bate et al.2010). Alternatively, interactions with a com-
panion star within a binary can also re-orient a disk (Batygin
2012). Both processes represent an alternative to the dy-
namical processes described in Sections 7 and 8 as a way to
produce hot Jupiters on highly-inclined orbits.

Since clusters have significant effects on the solar sys-
tems forming within them, and since our own Solar System
is likely to have formed within a cluster, one can use these
ideas to constrain the birth environment of the Sun (Adams
2010). Our Solar System has been only moderately per-
turbed via dynamical interactions, which implies that our
birth cluster was not overly destructive. On the other hand,a
close encounter with another star (or binary) may be neces-
sary to explain the observed edge of the Kuiper belt and the
orbit of the dwarf planet Sedna (Kobayashi and Ida2001;
Kenyon and Bromley2004; Morbidelli and Levison2004),
and the need for such an encounter implies an interactive
environment. Note that the expected timescale for an en-
counter (about 2000 yr) is much longer than the orbital pe-
riod at the edge of the Kuiper belt (350 yr), so that the edge
can become well-defined. Adding to the picture, meteoritic
evidence suggests that the early Solar System was enriched
in short-lived radioactive isotopes by a supernova explo-
sion (Wadhwa et al.2007), an AGB star (Wasserburg et al.
2006), or some combination of many supernovae and a sec-
ond generation massive star (Gounelle and Meynet2012;
Gounelle et al.2013). Taken together, these constraints
jointly imply that the birth cluster of the Solar System
was moderately large, with stellar membership sizeN =
103 − 104 (e.g.,Hester et al.2004;Adams2010).

7. THE LIDOV-KOZAI MECHANISM

The perturbing effect of Jupiter on the orbits of aster-
oids around the sun was considered byKozai(1962). It was
found that for sufficiently highly-inclined orbits, the aster-
oid would undergo large, periodic, changes in both eccen-
tricity and inclination. Work byLidov (1962) showed that
similar effects could be seen for an artificial satellite orbit-
ing a planet. Here we will refer to such perturbations as
the Lidov-Kozai mechanism when also applied to perturba-
tions of planetary orbits due to an inclined stellar compan-

Fig. 6.— Inclination flipping due to the Lidov-Kozai mech-
anism when the disturbing function is truncated to octupole
order (upper curve on panel a and lower curve on panel b)
versus quadrupole order (lower curve on panel a and up-
per curve on panel b). The inner binary consists of a1M⊙

star and a1MJ planet separated by 6 au withein = 0.001,
and the outer body is a brown dwarf of40MJ at a distance
of 100 au from the center of mass of the inner binary with
eout = 0.6. The bottom two plots display the normalized
vertical components of the inner and outer orbit angular mo-
mentum (Figure 1 ofNaoz et al.2011, reprinted by permis-
sion from Macmillan Publishers Ltd: Nature, 473, 187-189,
copyright 2011).

ion. Strong periodic interactions can also occur between
two planets, when one is highly-inclined.

The Lidov-Kozai mechanism is a possible formation
channel for hot Jupiters (as will be discussed in Section 8,
Fabrycky and Tremaine2007;Nagasawa et al.2008). Con-
currently, the Lidov-Kozai mechanism has found wide ap-
plicability to other astrophysical problems: binary super-
massive black holes (Blaes et al.2002); binary minor plan-
ets (where the Sun is considered the massive outer per-
turber) (Perets and Naoz2009; Fang and Margot2012b);
binary millisecond pulsars (Gopakumar et al.2009); stellar
disc-induced Lidov-Kozai oscillations in the Galactic cen-
ter (Chang2009); binary white dwarfs or binary neutron
stars (Thompson2011); and evolving triple star systems
with mass loss (Shappee and Thompson2013).

Lidov-Kozai evolution is approximated analytically by
applying Lagrange’s Planetary Equations to a truncated and
averaged form of the disturbing function (Valtonen and Karttunen
2006, Chapter 9). The truncation is justified because of the
hierarchical ordering of the mutual distances of the three
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Fig. 7.— Comparison of timescales and regimes of motion
for a four-body system consisting of two planets secularly
orbiting one star of a wide binary. The binary separation
and eccentricity are fixed at 500 AU and 0.5 for two 1M⊙

stars, and the inner0.3MJ planet resides 1 au away from its
parent star. Subscripts of “1” and “2” refer to the inner and
outer planet, “koz” the Lidov-Kozai characteristic timescale
due to the distant star, and “pp” timescales due to Laplace-
Lagrange secular theory. The unshaded, lightly-shaded and
darkly-shaded regions refer to where Lidov-Kozai cycles on
the outer planet are suppressed, the planetary orbits precess
in concert, and the inner planet’s eccentricity grows chaoti-
cally (Figure 14 of Takeda et al.2008, reproduced by per-
mission of the AAS).

bodies. The averaging occurs twice, over a longitude or
anomaly of both the lightest body and the outermost body.

Traditionally, the disturbing function is secular, mean-
ing that the planetary semimajor axes remain fixed and the
system is free from the influence of mean motion reso-
nances. The term “Lidov-Kozai resonance” refers simply to
the Lidov-Kozai mechanism, which includes large and pe-
riodic secular eccentricity and inclination variations. Con-
fusingly, an alteration of this mechanism that introduced
non-secular contributions (Kozai 1985) has been referred
to as a Lidov-Kozai resonancewithin a mean motion res-
onance. This formalism has been utilized to help model dy-
namics in the Kuiper Belt (Gallardo2006;Wan and Huang
2007;Gallardo et al.2012). The Lidov-Kozai mechanism
can also be modified by including the effects of star-planet
tides (see Section 8) resulting in significant changes in the
semi-major axis of a planet (a process sometimes known as
“Lidov-Kozai migration” ) (Wu and Murray2003).

The complete analytic solution to the secular equa-
tions resulting from the truncated and averaged disturb-
ing function may be expressed in terms of elliptic func-
tions (Vashkov’yak1999). However, more commonly an
approximate solution is found for small initial values of
eccentricities (e) (but where initial values of inclination
(i) are sufficiently large for Lidov-Kozai cycles to occur)
by truncating the disturbing function to quadrupole order
in the mutual distances between the bodies. This solu-
tion demonstrates that the argument of pericenter oscillates
around90◦ or 270◦, a dynamical signature of the Lidov-

Kozai mechanism. The solution also yields a useful rela-
tion:

√
1− e2 cos i ≈ constant subject toi > arcsin(2/5)

ande <
√

1− (5/3) cos2(i). This relation demonstrates
the interplay between eccentricity and inclination due to
angular momentum transfer. The period of the eccentricity
and inclination oscillations for most observable configura-
tions lie well within a main-sequence star lifetime, thus at
least thousands of such oscillations may occur before the
star evolves. The period is of the order of (Kiseleva et al.
1998):

τkozai =
2P 2

out

3πPin

M1 +M2 +M3

M3

(

1− e2out
)3/2

(10)

whereM1 andM2 are the masses of the innermost two bod-
ies orbiting each other with periodPin andM3 is the mass
of the outermost body orbiting the inner binary with period
Pout and eccentricityeout.

Recent work has demonstrated that the approximations
employed above fail to reproduce important aspects of the
true motion, which can be modeled with 3-body numer-
ical simulations. By instead retaining the octupole term
in the disturbing function,Ford et al. (2000) derived more
accurate, albeit complex, evolution equations for the true
motion. Subsequent relaxation of the assumption of small
initial eccentricities has allowed for a wider region of phase
space of the true motion to be reproduced by the Lidov-
Kozai mechanism (Katz et al. 2011; Lithwick and Naoz
2011;Naoz et al.2011;Libert and Delsate2012).

One outstanding consequence of retaining the octupole
term is that the effect may flip a planet’s orbital evolution
from prograde to retrograde, and consequently may explain
observations. The projected angle between stellar rotation
and planetary orbital angular momentum has been mea-
sured for tens of hot Jupiters with the Rossiter-Mclaughlin
effect (Triaud et al.2010). These observations show us that
some 20% of hot jupiters most probably have retrograde
orbits whilst 50% or so are aligned (Albrecht et al.2012).
In at least one case (Winn et al.2009) the true angle is at
least86◦, helping to reinforce indications of a subset of
planets orbiting in a retrograde fashion with inclinations
above90◦ (Albrecht et al.2012).Naoz et al.(2011) demon-
strated how the Lidov-Kozai mechanism can produce these
orbits2. Figure 6 illustrates how this inclination “flipping”
can occur naturally in a three-body system, and the conse-
quences of truncating the disturbing function to quadrupole
order. In panel (a) and (b) of this figure, one sees that when
the disturbing function is truncated at the quadrupole term,
then the spread of inclinations and eccentricities are small,
whereas when going to octupole order, the orbit flips (ie in-
clinations above90◦) and eccentricities reach to values very
close to unity.

2They also discovered an important error in the original derivation of the
truncated, averaged disturbing function (Kozai 1962) which did not con-
serve angular momentum due to an erroneous assumption aboutthe longi-
tudes of ascending nodes.
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Lidov-Kozai oscillations do not work in isolation.
Bodies are not point masses: effects of tides, stellar
oblateness and general relativity may play crucial roles
in the evolution. These contributions have been de-
tailed by Fabrycky and Tremaine(2007), Chang (2009),
Veras and Ford(2010) andBeust et al.(2012).

A major consequence of these effects, in particular tides,
is that planets formed beyond the snow line may become hot
Jupiters through orbital shrinkage and tidal circularization
[see Section 8].

The Lidov-Kozai mechanism may also be affected by
the presence of a nascent protoplanetary disc, and hence
play a crucial role during the formation of planets around
one component of a binary system. If the secondary
star is sufficiently inclined to and separated from the or-
bital plane of the primary, then the Lidov-Kozai mecha-
nism might “turn on”, exciting the eccentricity of plan-
etesimals and diminishing prospects for planet formation
(Marzari and Barbieri2007; Fragner et al.2011). How-
ever, the inclusion of the effects of gas drag (Xie et al.
2011) and protoplanetary disc self-gravity (Batygin et al.
2011) assuage the destructive effect of Lidov-Kozai oscilla-
tions, helping to provide favorable conditions for planetary
growth.

Lidov-Kozai-like oscillations are also active in systems
with more than three bodies, which is the focus of the
remainder of this section. Examples include quadruple
star systems (Beust and Dutrey2006), triple star systems
with one planet (Marzari and Barbieri2007) and multiple-
planet systems with or without additional stellar compan-
ions.

Given the likelihood of multiple exoplanets in binary
systems, how the Lidov-Kozai mechanism operates in
these systems is of particular interest. In particular, ec-
centricity and inclination oscillations produced by a wide-
binary stellar companion can induce planet-planet scatter-
ing, leading to dynamical instability (Innanen et al.1997).
Malmberg et al.(2007a) demonstrate that this type of in-
stability can result in planet stripping in the stellar birth
cluster, where binaries are formed and disrupted at high
inclinations.

Alternatively, multiple-planet systems within a wide bi-
nary may remain stable due to Lidov-Kozai oscillations.
Understanding the conditions in which stability may occur
and the consequences for the orbital system evolution can
help explain current observations.Takeda et al.(2008) out-
line how to achieve this characterization by considering the
secular evolution of a two-planet system in a wide binary,
such that the mutual planet-planet interactions produce no
change in semimajor axis. These planet-planet interactions
may be coupled analytically to Lidov-Kozai oscillations be-
cause the latter are usually considered to result from secular
evolution.

Takeda et al.(2008) compare the period of Lidov-Kozai
oscillations with the period the oscillations produced by
Laplace-Lagrange secular interactions (see Section 2), as
shown in Figure 7. The figure provides an example of

where Lidov-Kozai oscillations dominate or become sup-
pressed (by comparing the curves), and the character of the
resulting dynamical evolution (identified by the shaded re-
gions). Because the Lidov-Kozai oscillation timescale in-
creases with binary separation (see Equation 10), Lidov-
Kozai oscillations are less likely to have an important effect
on multi-planet evolution contained in wider stellar bina-
ries. However, for wide-enough binaries, Galactic tides can
cause close pericenter passages every few Gyr, perhaps ex-
plaining the difference in the observed eccentricity distri-
bution of the population of giant planets in close binaries
versus those in wide binaries (Kaib et al.2013).

8. DYNAMICAL ORIGIN OF HOT JUPITERS

The first exoplanet that was confirmed to orbit a main se-
quence star, 51 Pegasi b (Mayor and Queloz1995) became
a prototype for a class of exoplanets known as hot Jupiters.
The transiting subset of the hot Jupiters (here defined as
a ≤ 0.1 AU andMp sin i = 0.25− 20MJ) provide unique
constraints on planetary evolution, and allow observational
studies of atmospheric phenomena that are currently not
possible for more distant planets. Identifying the dynam-
ical origin of hot-Jupiters is a long-standing problem and is
the topic of this section.

It is generally accepted that hot Jupiters cannot formin
situ (Bodenheimer et al.2000). If true, then their origin re-
quires either migration through a massive, and presumably
gaseous, disk or dynamical interactions involving multiple
stellar or planetary bodies. Although both possibilities re-
main open, recent observations (e.g.,Winn et al.2010) in-
dicate that roughly one fourth of hot Jupiter orbits are sub-
stantially misaligned with respect to the stellar rotationaxis.
These systems (and perhaps others) are naturally explained
by dynamical processes, which are the focus of this section.
The relevant dynamics may involve:

• Lidov-Kozai evolution of a one-planet system per-
turbed by a binary stellar companion

• Lidov-Kozai evolution in a multiple-planet system

• Scattering of multiple planets or secular evolution un-
related to the Kozai resonance

• Secular chaos

All of these processes are likely to occur at some level,
so the main open question is their relative contribution to
forming the observed hot Jupiter population. In every case,
tidal interactions — which are inevitable for planets with
the orbital period of hot Jupiters — are required in order
to shrink and circularize the orbit (Ivanov and Papaloizou
2004;Guillochon et al.2011). Tides raised on the star are
expected to dominate orbital decay, while tides raised on
the planet are likely to dominate circularization. However,
tides on both bodies can contribute significantly. Quanti-
tative comparisons between theoretical models and obser-
vations are limited by considerable uncertainties in tidal
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Fig. 10.— Hot Jupiter production by multiple planet evolution with no Lidov-Kozai cycles. The inner, middle and outer
planets have masses of0.5MJ , 1.0MJ and1.5MJ , and initial semimajor axes of1 AU, 6 AU and16 AU, eccentricities of
0.066, 0.188 and0.334 and inclinations of4.5◦, 19.9◦ and7.9◦. This choice places the AMD primarily in the outer planets
(Figure 2 of Wu and Lithwick2011, reproduced by permission of AAS).

physics and planetary structure, as well as observational bi-
ases in determining the orbital period distribution and the
eccentricity of nearly circular orbits (Zakamska et al.2011;
Gaidos and Mann2013).

A mechanism for generating high eccentricities, and
tidal damping, are minimal ingredients for the dynamical
formation of hot Jupiters. Several other processes, how-
ever, including general relativity, oblateness (Correia et al.
2012) and tides, can lead to precession of short-period or-
bits. These processes need to be included in models of hot
Jupiter formation via secular dynamical effects.Wu and
Murray (2003) quote formulae for the precession rates,

ω̇GR = 3n
GM∗

apc2(1− e2p)

ω̇tid =
15

2
nk2

1 + (3/2)e2p + (1/8)e4p
(1− e2p)

5
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(
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)5
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1

2
n

k2
(1 − e2p)

2

(

Ωp
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)2
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Mp

(

Rp

ap

)5

. (11)

Hereap, ep, Mp, Rp andΩp are the planet’s semi-major
axis, eccentricity, mass, radius and spin frequency,n is the
mean motion, andk2 is the tidal Love number. Lidov-Kozai
oscillations are generally suppressed if any of these preces-
sion rates exceeḋωkozai. This can easily occur forap <
1 AU. Eccentricity can be enhanced whenω̇GR ≃ −ω̇kozai

(Ford et al.2000).
Figure 8, fromWu and Murray(2003), illustrates how

hot Jupiters can form in a single planet system with an in-
clined stellar companion. Lidov-Kozai oscillations in the
planetary eccentricity result in periods where the pericenter
distance is close enough for stellar tides to shrink the or-
bit. As the orbit shrinks, the additional dynamical effects
described above become more important, resulting in a de-
crease in the amplitude of the eccentricity and inclination

variations. In this example, after 700 Myr, GR suppresses
the Lidov-Kozai oscillations completely. The influence of
the secondary star then becomes negligible as tidal interac-
tions dominate.Wu et al.(2007), using a binary population
model and estimates for the radial distribution of massive
extrasolar planets, estimated that this process could account
for 10% or more of the hot Jupiter population.

A combination of gravitational scattering (Ford and Rasio
2006) and Lidov-Kozai oscillations can also lead to the pro-
duction of hot Jupiters from multiple-planet systems around
single stars. Figure 9 provides an example of three-planet
scattering in which the outer planet is ejected, triggering
Lidov-Kozai cycles between the other two planets. These
oscillations are not as regular as those in Figure 6 because
in Figure 9 the outermost body is comparable in mass to the
middle body. Nevertheless, the oscillations of the argument
of pericenter about90◦ is indicative of the Lidov-Kozai
mechanism at work. By about 3 Myr, the semimajor axis
of the inner planet has shrunk to a value of 0.07 AU, after
which other physical effects dictate the future evolution of
the planet.

Both the fraction of scattering systems that yield star-
grazing planets, and the fraction of those systems that
yield surviving hot Jupiters, are uncertain.Nagasawa et al.
(2008) andNagasawa and Ida(2011) integrated ensembles
of unstable three planet systems, using a model that in-
cluded both gravitational and tidal forces. They obtained
an extremely high yield (≃ 30%) of highly eccentric plan-
ets, that was larger than the yield found in earlier calcu-
lations that did not include tides (Chatterjee et al.2008).
One should note that these numbers do not reflect the ex-
pected fraction of scattering systems that would yieldlong-
lived hot Jupiters, as many of the highly eccentric planets
circularize into orbits with tidal decay times less than the
main sequence lifetime.Beauǵe and Nesvorńy (2012), on
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Fig. 8.— Hot Jupiter production by Lidov-Kozai forcing
from a stellar binary companion. A7.80MJ planet with
ap = 5.0 AU, ep(t = 0) = 0.1, Ip(t = 0) = 85.6◦, and
ωp(t = 0) = 45◦ is evolving under the influence of two
1.1M⊙ stars separated by1000 AU on a eB = 0.5 orbit
(Figure1 of Wu and Murray2003, reproduced by permis-
sion of AAS).

the other hand, using a different tidal model, a dispersion
in planet masses, and resonant initial conditions, found a
yield of surviving hot Jupiters of approximately 10%. Ten
percent is also, roughly, the fraction of hot Jupiters in an
unbiased sample of all massive planets with orbital radii
less than a few AU. The efficiency of hot Jupiter produc-
tion from scattering plus tidal circularization is thus high
enough for this channel to contribute substantially to the
population, if one assumes that scattering occurs in the ma-
jority of all such planetary systems.

Hot Jupiters can originate from multi-planet dynamics
without the Lidov-Kozai effect. Wu and Lithwick(2011)
present special configurations of the 4-body problem that
allow for the innermost planet in a 3-planet system to be
forced into the tidal circularization radius. These con-
figurations require a significant angular momentum deficit
(AMD) in the original planetary system. Figure 10 presents
an example of hot Jupiter production without the Lidov-
Kozai effect. Note that all three planets survive the evo-
lution and never cross orbits.

If planet formation produces multiple planets on nearly
circular, coplanar orbits, then secular evolution alone isnot
sufficient to produce hot Jupiters. Planet-disk interactions

Fig. 9.— Hot Jupiter production by Lidov-Kozai forcing
from multiple-planet interactions. The inner, middle and
outer planets have masses of1MJ , 2MJ and1MJ and ini-
tially nearly circular (e < 0.1) and coplanar (I < 1◦) orbits
(Figure 11 of Beauǵe and Nesvorńy 2012, reproduced by
permission of AAS).

are not currently thought to be able to generate signifi-
cant planetary eccentricity (except for high mass planets),
and hence the easiest route toward forming systems with
a significant AMD appears to be an initial phase of strong
planet-planet scattering. In such a model, hot Jupiters could
either be formed early (from highly eccentric scattered
planets) or late (from long term secular evolution among the
remaining planets after scattering). Which channel would
dominate is unclear.

The observation of strongly misaligned and retrograde
orbits from Rossiter-McLaughlin measurements provides
evidence in favor of dynamical formation mechanisms (e.g.,
Winn et al.2009), but does not immediately discriminate
among different dynamical scenarios. In particular, al-
though pure Lidov-Kozai evolution involving a circular
stellar companion cannot create a retrograde planet, the
presence of eccentricity in either a stellar or planetary per-
turber can (Katz et al.2011;Lithwick and Naoz2011). The
same is true for secular evolution without the Lidov-Kozai
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effect.
Dawson et al.(2012b) compare the three potential ori-

gin channels described above, and suggest that Lidov-Kozai
evolution in binary stellar systems is unlikely to dominate,
but may explain15+29

−11% of hot Jupiters, corroborating
Naoz et al.(2012) result of≈ 30%. These estimates rely
upon the results ofNagasawa and Ida(2011) that find a
large fraction of scattering systems (∼ 30%) form (at least
initially) a hot Jupiter, a result that they attribute in substan-
tial part to Lidov-Kozai evolution. Similar calculations by
Beauǵe and Nesvorńy (2012), using a more realistic tidal
model, find less efficient hot Jupiter formation driven pri-
marily by scattering events. They suggest that higher ini-
tial planetary multiplicity results in hot Jupiter populations
in better accord with observations.Morton and Johnson
(2011) provide constraints on the frequency of the two dif-
ferent Lidov-Kozai-induced hot Jupiter formation scenarios
from spin-orbit data. They find that the results depend crit-
ically on the presence or lack of a population of aligned
planetary systems. If this population exists, multiple-planet
Lidov-Kozai scattering (specifically from the model of
Nagasawa et al.2008) is the favored formation mechanism.
Otherwise, binary-induced Lidov-Kozai evolution (specif-
ically from the model of Fabrycky and Tremaine2007) is
the favored model. The above results also depend upon the
assumed tidal physics.Dawson et al.(2012a) identified Ke-
pler Object of Interest (KOI) 1474.01 as a proto-hot Jupiter
based on the long transit duration for its orbital period. The
presence of large transit timing variations suggests that scat-
tering by a more distant giant planet may explain the origin
of KOI 1474.01’s high eccentricity. With further analysis,
the abundance of transiting proto-hot Jupiters could pro-
vide a constraint on the timescale of the high eccentricity
migration phase of hot Jupiter’s formation.

9. SUMMARY

We have reviewed the long-term dynamical evolution of
planetary systems. Our key points are listed below:

1. The giant-planet sub-system of the Solar System is
stable although the terrestrial-planet sub-system is
marginally unstable with a small chance of planet-
planet encounters during the lifetime of the Sun.

2. Planet-planet scatteringin tighter planetary systems
can lead to close encounters between planets. The
timescale before a system undergoes such encounters
is a strong function of the separation of planets.

3. Secular interactionscause the redistribution of an-
gular momentum amongst planets in a system. In
systems with a sufficiently large angular momentum
deficit (AMD), such redistribution can lead to close
planetary encounters.

4. The outcome of planetary close encountersis a func-
tion of the Safronov number. Collisions dominate

when the planetary surface escape speeds are smaller
than orbital speeds. Planetary scattering will be more
common when the surface escape speeds are larger
than the planetary orbital speeds in a system.

5. Planets are predicted to pass through a phase of wide
orbits within unstable planetary systems as ejections
occur only after several scatterings. Imaging surveys
will therefore inform us about the frequency of unsta-
ble systems.

6. The observed eccentricity distributionis consistent
with being an outcome of planet-planet scattering in
unstable systems.

7. Interactions with planetesimal diskswill cause plan-
ets to migrate which in turn can lead to instabilities
within a planetary system. This process probably
played an important role in the early history of our
own Solar System.

8. Aging systems may become unstablewhen the host
star evolves to become a white dwarf, and loses mass,
as the relative strength of the planet-planet interac-
tions increase compared to the interactions between
the planets and host star.

9. Fly-by encounters in stellar clusterswill occur in
dense birth environments. Such encounters may lead
to the direct ejection of planets in some cases. In
other encounters, perturbations to the planetary orbits
lead to instabilities on longer timescales. The intrud-
ing star may also pick-up a planet from the system.

10. Exchange into binariescan occur in stellar clus-
ters. Planetary systems may be de-stabilised by the
perturbing effect of the companion star through the
Lidov-Kozai mechanism where the outer planet suf-
fers periods of higher eccentricity leading it to have
strong encounters with other planets.

11. The Lidov-Kozai mechanismmay also operate within
primordial binaries or planetary multiple systems,
leading to the periodic increase in eccentricity of
planet’s orbits and planet-planet encounters in the
case of multiple-planet systems.

12. The origin of hot Jupitersthrough dynamical interac-
tions may involve one of five possible routes: Lidov-
Kozai evolution of a one-planet system perturbed by
a binary stellar companion; Lidov-Kozai evolution in
a multiple-planet system; scattering of multiple plan-
ets; secular evolution unrelated to the Kozai reso-
nance; or the re-orientation of circumstellar disks be-
fore planets form via interaction with a companion
star, or via late infall of material or interactions or
neighboring stars in clustered birth environments.
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tron. Soc., 431, 3494.

Levison H. F., Morbidelli A., Gomes R., and Backman D. (2007)
Protostars and Planets V, pp. 669–684.

Levison H. F., Morbidelli A., Tsiganis K., Nesvorný D., and
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