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Chapter 1

The Homogeneous Universe

1.1 The Expansion of the Universe

The expansion of the Universe follows readily from the equations of general relativity, a fact that has
been realised �rst by Einstein [3] and that he �rst considered a failure of his theory. To rectify it, he
introduced the cosmological constant Λ, which allows for a static solution that is however unstable as
he immediately realised. The discovery of the expansion by measurements of the recession of nearby
galaxies by Lemaître and Hubble then showed that the Universe is indeed expanding and the Λ-term
has been no longer considered until more recent data indicated that it is indeed necessary to describe
the expansion correctly – but this time not to allow for a static solution, but to match the accelerated
expansion. We will not concern us here with relativistic theory – that is the subject of another course
in MAUCA – instead we will stay mainly in the Newtonian picture.

1.1.1 Newtonian Cosmology

In fact, one can get the necessity for an expanding Universe already from Newtonian theory. We start
with Poisson’s equation which relates the local density ρ to the second derivative of the gravitational
potential φ as

∇2φ = 4πGρ, (1.1)
which can be rewritten in spherical coordinates (where ∇2φ = r−2∂rr

2∂r) as

∂rφ =
4πG

r2

∫ r

0

ρr′2dr′ =⇒ r̈ =
4πG

3
ρ̄r, (1.2)

where we have used that r̈ = ∇φ and assumed ρ = ρ̄ to be constant in space. We can integrate once
w.r.t. time (assuming ρ̄ is also constant in time) to �nd

ṙ2 − 8πG

3
ρr2 = E, (1.3)

where E is a constant of integration. If we write r = a(t) · r0, then we can express this equation as(
ȧ

a

)2

=
8πGρ̄

3
− Kc2

a2
, (1.4)
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Figure 1.1: The in�uence of the total density on the curvature of the Universe. A universe in excess of
the critical density ρ̄ > ρcrit is positively curved, a universe at the critical density is �at and a universe
short of the critical density ρ̄ < ρcrit is negatively curved (hyperbolic).

where K = −E/(cr0)2. K is called the curvature and is zero only if E = 0, otherwise K = ±1 since
we can choose r0 accordingly so that this is the case. The function a(t) that we have introduced is called
the scale factor of the Universe and describes how length scales transform over time. We can thus say
that ȧ > 0 corresponds to an expanding universe and ȧ < 0 to a contracting universe. Similarly, a
universe in which ä > 0 is accelerating, while one in which ä < 0 is decelerating. A universe would be
static if ȧ = 0 and only remain static if also ä = 0.

The ratio ȧ(t)/a(t) at the present time t = t0 is called the Hubble constant

H0 ≡ ȧ0/a0. (1.5)

which is often also written in terms of the Hubble parameter h de�ned so that H0 = 100h km/s/Mpc.
The value of the curvature term K is then uniquely de�ned in terms of the density at the present time
ρ̄0 and the Hubble constant. The curvature term is zero exactly in the case when the density is

ρ̄0 = ρcrit,0 ≡
3H2

0

8πG
, (1.6)

which we call the critical density of the Universe. Given such a unique value for the density, we can
express the mean density in units of this critical density as a density parameter

Ω0 ≡ ρ̄0/ρcrit,0. (1.7)

This allows us to write the curvature in a particularly simple form as K = H2
0a

2
0(Ω0 − 1) so that

K =

 −1 : negative curvature
0 : no curvature

+1 : positive curvature
corresponds to

Ω0 < 1
Ω0 = 1
Ω0 > 1

(1.8)

Finally, one customarily de�nes the deceleration parameter q0

q0 ≡ −
ä0

a0

(
ȧ0

a0

)−2

= − ä0a0

ȧ2
0

(1.9)

that characterises whether the expansion of the universe is currently accelerating (q0 < 0) or deceler-
ating (q0 > 0).
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We note that the expansion with time as a(t) causes all length scales to expand, so also the wavelengths
of photons. A photon emitted at a time t will thus experience a scaling of its wavelength after emission
with λem so that λobs = λema0/a(t) and one typically de�nes this in term of the cosmological redshift

z ≡ λobs

λem
− 1 =

a0

a(t)− 1
. (1.10)

If a(t) is monotonically increasing, both a and z can thus be used to label time in an expanding Universe.
Since photons travel with the speed of light, we will see distant photons coming from a time when the
Universe was smaller (and thus younger) than today. The redshift of a photon thus indicates both its
distance and the age of the Universe when it was emitted rendering it possible to peak into ’the past’
when observing the high-redshift Universe.

In this derivation, we have required that ρ̄ does not change with time. For ordinary matter that would
dilute with the expansion of the universe, this means that ρ̄ ∝ a−3. We will investigate this next, when
we consider the more general form of equation (1.4) next.

1.1.2 Friedmann’s Equation

Our derivation above has only used Newtonian physics, however, the main result, eq. (1.4), is identical
to a derivation from general relativity for a homogeneous and isotropic universe. In the relativistic
derivation, one however sees more nicely that there can be multiple contributions to ρ̄ whose physical
density over time behaves di�erently with the expansion of the Universe.

• nonrelativistic matter is the ordinary matter (dominated by rest mass) we imagine to dilute as
ρm ∝ a−3 with the expansion of the Universe

• relativistic matter (such as photons) is matter dominated by their relativistic momentum and its
energy density changes as ρr ∝ a−4 (the number of photons also dilutes as a−3, but their energy
is also redshifted as a−1).

• cosmological constant is the beast �rst introduced by Einstein in 1917 and now necessary to
explain the accelerated expansion of the Universe. Its density ρΛ = c2Λ/8πG = const. does not
dilute with the expansion of the Universe.

• curvature and other topological terms we have already seen above that the curvature appears as
a term ∝ a−2 which means that as the Universe expands, also any non-zero curvature will be
stretched out and thus reduced. In more exotic models, one could also construct other topological
contributions that would contribute e.g. like ∝ a−1 (domain walls).

All these components can be conveniently expressed in terms of their density parameters Ω and con-
tribute jointly to the Friedmann equation, �rst derived in 1922 by the Russian physicist Alexander Fried-
mann [4],

H2(t) =

(
ȧ

a

)2

= H2
0

[
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

]
, (1.11)

= H2
0 [Ωr(a) + Ωm(a) + Ωk(a) + ΩΛ] (1.12)

where one for convenience de�nes Ωk,0 = 1 − Ωr,0 − Ωm,0 − ΩΛ as the contribution from curvature
if the total density does not amount to the critical value, i.e. ρ̄0 6= ρcrit,0 in which case Ωk,0 6= 0.

We have no fundamental theory that predicts values for the large amount of constants that appear in
the Friedmann equation (H0,Ωm,Ωr,ΩΛ,Ωk) and they instead have to be measured from cosmological
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Figure 1.2: The original diagram that Edwin Hubble made in 1929 relating the distance and the recession
velocity of nearby galaxies and the linear �t he provided of the form v = H0 d. As you can see, his
original value (H0 ∼ 500 km/s/Mpc) is quite di�erent from the precision value we have today (H0 =
67.74± 0.46 km/s/Mpc). The discrepancy is mainly due to Hubble’s determination of distances being
wrong by about a factor of 7. However, the factor was roughly the same for all his galaxies, so that he
indeed measured the expansion of the Universe.

observations. How this done is discussed in other MAUCA courses/meteors. The most recent values
for these constants are found from the combination of various measurements [7] and areH0 = 67.74±
0.46 km/s/Mpc, Ωm = 0.3089 ± 0.0062, ΩΛ = 0.6911 ± 0.0062 and Ωk ∼ 0. We will calculate the
Ωγ due to photons below. There is also a contribution Ων from massive neutrinos which is estimated to
be about 50% of Ωγ and together they can be thought to make up Ωr ' 8.4× 10−5 since the neutrinos
have only recently become non-relativistic.

In Figure 1.2, you can see Hubble’s original plot of the local expansion of the Universe (v ∼ H0 d),
and his linear �t to the velocity/distance pairs [5]. Although his distance measurements were wrong
by about a factor of seven, this is commonly seen as the discovery of the expansion of the Universe.
Lemaître had similar measurements at the time [6], and in fact published them two years before Hubble
in a Belgian journal in French (that apparently not many people read), but did not bother to re-publish
them in English after Hubble’s results came out.

Exercise 1 While today ΩΛ > Ωm > Ωr , this was not always the case. Determine the epoch (in terms
of z and a) of equality between the cosmological constant and the matter energy density, as well as that of
matter and radiation equality.

Exercise 2 Write a Python script to numerically integrate the Friedmann equation (1.12) and plot the
solution a(t) for the best-�t model given above. Play with the parameters and discuss what changes. If one
assumes a universe containing only matter (Ωm = 1), or only radiation (Ωr = 1), or only a cosmological
constant (ΩΛ = 1), then analytic solutions for the Friedmann equation exist. Derive them and include them
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in your plot. Compare your numerical solution against the analytic solutions for these cases. Discuss why
Einstein’s solution of �xing an ΩΛ so that the Universe becomes static is unstable.

Hint for this exercise You can �nd a code snippet that shows how to carry out such a numerical integra-
tion in Python in Appendix A.1

1.2 Comoving frames and peculiar velocities

In an expanding Universe, a trajectory ~r(t) of a particle can be separated into the part that is due to the
expansion of the Universe and the so-called co-moving trajectory ~x(t) so that

~r(t) = a(t)~x(t) (1.13)

the velocity is then of course given by

~v(t) = ~̇r(t) = a(t)~̇x(t) + ȧ(t)~x(t) = a(t)~̇x(t) +
ȧ

a
~r(t) = vpec + vexp (1.14)

and we call ~vc(t) = ~̇x(t) the co-moving peculiar velocity and ~vpec = a(t)~vc the physical peculiar
velocity as they represent the genuine motion of the particle. For a particle at rest ~x(t) = const, the
�rst term vanishes and the second term shows a distance dependent motion that is due to the expansion
alone. This second term is thus usually called the Hubble �ow as it describes the increasing recession
velocity of galaxies with distance from us measured by Hubble (and Lemaître) in 1929 and is the term
responsible for the cosmological redshift.

Let us next consider how the expansion of the Universe acts on a freely moving particle. From the
equation above, we �nd that the change in peculiar velocity must be

dv = − ȧ
a

dr = − ȧ
a
vdt. (1.15)

We can rewrite this equation as d log v = −d log a and integrating then yields

v2

v1
=
a(t1)

a(t2)
, (1.16)

which implies that peculiar velocities decay like vpec ∝ a−1(t). Note that this is true of course also for
the momentum of nonrelativistic particles, i.e. p ∝ a−1 and it also turns our to be true for photons (this
can also be seen from the p = hν for photons and ν = c/λ where λ ∝ a due to the redshift.

Any peculiar motion along the line of sight (v‖ shall be the component of the physical peculiar velocity
parallel to the line of sight) will of course introduce an additional redshift given by the relativistic
Doppler formula

1 + zv =

√
1 + v‖/c

1− v‖/c
' 1 +

v‖
c
, (1.17)

where the �nal approximation is valid for v � c. The total observed redshift is then given by

1 + zobs = (1 + zv)(1 + zcosm) ' (1 + zcosm)(1 +
vpec,‖
c

). (1.18)
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Since for distant galaxies, we cannot measure distance directly, but have to use the redshift as a distance
estimator, peculiar motion will lead to what is called redshift-space distortions.

Another, related, important e�ect is the �nger-of-god e�ect. This appears for objects that are gravita-
tionally bound and thus have an internal velocity dispersion, such as galaxy clusters. Let’s assume we
can model this velocity dispersion along the line of sight with a single number σv . Then its apparent
dispersion in redshift around the cosmological redshift will be

σz =
σv
c

(1 + zcosm). (1.19)

Exercise 3 Assume a gravitationally bound galaxy cluster of mass M = 1015 M� and radius R =
2.5 Mpc at z = 0.1 in virial equilibrium, i.e. 2Ekin + Epot = 0. What is its velocity dispersion, and
what is its extent in redshift space? Do you understand where the name "�nger-of-god" comes from?

1.3 The initial singularity and the CMB

If the Universe is expanding over time, it obviously contracts if we go back in time. If a→ 0 as t→ 0,
then the Universe will have an initial singularity and a �nite age. Clearly, we are entering a regime
where we wouldn’t expect our known physics to work just before the singularity would arise and this
area is of much debate in the quantum gravity communities. For us it su�ces to know that there is a
�nite time and that the energy density diverges for all components except the cosmological constant as
a→ 0. Long before that regime, we would however expect that photons and atoms become so densely
packed that they form a common plasma in equilibrium and that if such a plasma phase existed, we
should see relic photons that were released when the plasma recombined to form neutral gas and the
photons were free to travel without further scattering towards us. Since during such a plasma phase we
imagine photons and ions to be in thermal equilibrium at the same temperature, we expect the photons
to follow a blackbody spectrum at the time of recombination of the plasma. As the photons travel to us,
this spectrum is only redshifted but not distorted. The energy density of radiation emitted by a black
body of temperature T is

uλ(T ) =
8πhc

λ5

[
exp

(
hc

λkbT

)
− 1

]−1

, (1.20)

for which we note that the shape of the spectral energy distribution (the term in the square brackets)
does not change its shape under red shifting if λ × T = const which means that we can always �nd
a temperature T ∝ a−1 that describes the spectrum. The overall amplitude will however change and
it should better agree with the scaling ∝ a−4 that we expect for photons! To see this, we integrate the
spectrum over all wavelengths.

u(T ) =

∫ ∞
0

uλ(T ) dλ =
4σ

c
T 4, where σ =

2π5k4

15c2h3
(1.21)

is the Stefan-Boltzmann constant. And indeed we recover that u ∝ a−4 if T ∝ a−1, the black body
spectrum will thus retain its spectral form and just appear redshifted to lower temperatures. This relic
radiation, the cosmic microwave background radiation (CMB), has indeed been measured by Penzias &
Wilson in 1964 (Nobel prize 1978) to be at a temperature T ∼ 3K. Its spectral shape has later (most
clearly by the COBE satellite) been determined to be a perfect black body at T ∼ 2.725 K. From this
we can directly calculate Ωγ = u(T = 2.725K)/ρcrit,0c

2 = 2.47× 10−5h−2. A calculation taking into
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account ionisation equilibrium in a plasma shows that the plasma should combine to a neutral gas and
the photons should stream freely when the temperature drops below ∼ 3000 K at a redshift around
z = 1000 (i.e. a ∼ 10−3).

Exercise 4 Calculate the age of the Universe for the best �t parameters given before. Calculate it also for a
universe that would consist of normal matter only (Ωm = 1). We expect quantum gravity to become impor-
tant when the Compton wavelength of a particle λc = h/(mc) becomes comparable to its Schwarzschild
radius Rs = 2Gm/c2. From this one can write down an energy (mass) scale, a length scale and a time
scale (all named after Max Planck). Write them down and give their values. At what redshift do these scales
become important?

1.4 Horizons

The �nite age of the Universe, along with the �nite speed of light lead to light being able to travel only
a �nite distance. This gives rise to two concepts of horizon – meaning the maximum distance light can
have travelled or will be able to travel.

1.4.1 Particle horizon

The �nite age of the Universe implies that a ray of light can only have travelled a �nite distance. In a
short time interval dt, a light ray will have propagated a proper distance adx, where x is a comoving
scale, so cdt = adx. The physical distance that a signal could have travelled since the big bang until
time t is thus given by

dH(t) = a(t)

∫ t

0

cdt′

a(t′)
, (1.22)

which is the particle horizon at time t. So although the universe was very small just after the big bang,
its expansion prevented a causal connection between points outside the particle horizon. If we �nd
regions of the Universe that appear similar and that are separated by more than dH (and we do), we
have a causality problem. This is usually referred to as the horizon problem. We will discuss a possible
solution to this problem (and others) in one of the next lectures.

1.4.2 Event horizons

Likewise, there may exist another horizon in the Universe. If there is a distance beyond which no light
ray can travel for all future time (t→∞), we call this an event horizon. The rationale to calculate it is
the same as for the particle horizon, we just integrate from t to in�nity this time. The physical size of
the event horizon is then

dE(t) = a(t)

∫ ∞
t

cdt′

a(t′)
. (1.23)

For an event horizon to exist, the universe needs to expand quickly enough. If an event horizon exists,
it means that it will never be possible to have any knowledge about what’s outside of it.
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Exercise 5 Does our Universe, given the best �t cosmological parameters, have an event horizon? Does
a �at Ωm = 1 universe have one? Which ingredient of the Friedmann equation is necessary to produce
an even horizon? What do you think are the implications for the future of universes that have an event
horizon?

1.5 Some Thermodynamics

As we have brie�y mentioned above, the universe becomes hotter and denser as we go to earlier times.
This leads to a heat bath in which many processes can occur in equilibrium. As the heat bath decreases
in energy with the expansion of the Universe, these processes will freeze out and stop. We will now
lay some foundations for understanding the physics behind this. In general, one express the statistical
properties of a large number of particles in terms of their distribution function, which gives their density
in six-dimensional phase space (3 positions × 3 momentum coordinates). The distribution function
f(x,p, t) is then a positive function of these six coordinates and time. The number density, energy
density and pressure which are functions only of the position can then be given by integrating out the
velocity dimensions (marginalising over them). Since we assume that the Universe is homogeneous,
they will be identical at every point in space and it su�ces to consider them as functions of time only.
Since the Universe is also isotropic, there will also be no directional dependence in the momenta p, so
that we can simply work with the modulus of the momentum p. We then have

n(t) = 4π

∫
f(p, t)p2dp (1.24)

ρ(t) =
4π

c2

∫
E(p)f(p, t)p2dp (1.25)

P (t) = 4πc2
∫

p2

3E(p)
f(p, t)p2dp. (1.26)

Energy and momentum of particles are related through the relativistic momentum equation as E2 =
p2c2 +m2c4. The term in the expression for the pressure comes from the usual de�nition of the kinetic
pressure of a gas P = 1

3n 〈pv〉 and the relativistic momentum which gives v = pc2/E.

If the particles are in a thermodynamic equilibrium state, they will follow either a Fermi-Dirac or a
Bose-Einstein distribution function, depending on the species of the particles. These distributions are

f(p, t) =
g

(2π)3

[
exp

(
E(p)− µ
kT (t)

)
± 1

]−1

, (1.27)

where the ’+’ version holds for fermions (spin-1/2) particles and the ’-’ version for bosons (integer spin),
and µ is the chemical potential. The pre-factor g is a spin degeneracy factor and depends on the number
of possible spin states for the particle type (e.g. electrons and photons have g = 2, quarks have g = 6,
neutrinos have g = 1).

We will just compute a few limits of these equilibrium distributions. The particles are non-relativistic
if the thermal energy is less than their rest mass energy kT � mc2. In this case it is easy to carry out
the integrals above and one �nds

n(T ) = g

(
mkT

2π

)3/2

exp

(
µ−mc2
kT

)
, ρ(t) = mn(t), P (t) = nkT. (1.28)
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The other limit one can easily calculate is for the ultrarelativistic (kT � mc2) non-degenerate (µ� kT )
case. In this limit one �nds for fermions

n(t) =
3

4
(ζ(3)π2)gT 3, ρ(t) =

7

8
(π2/30)gT 4, P = ρ/3 (1.29)

and for bosons
n(t) = (ζ(3)/π2)gT 3, ρ(t) = (π2/30)gT 4, P = ρ/3. (1.30)

The evolution of the phase space distribution function follows the Boltzmann equationDf/Dt = C[f ],
where C is the collision-term. In its absence, we immediately get the dilution of particles with cosmic
expansion n(t) ∝ a−3.

1

a3

d

dt
(a3n(t)) = 0. (1.31)

If collisions (or reactions) are important, then the density of a species X evolves as

1

a3

d

dt
(a3n(t)) =

dnX
dt

+ 3HnX =

∫
dpXC[fX ]. (1.32)

One can show1, that for a reaction process 1 + 2↔ 3 + 4, the right-hand side becomes

dn1

dt
+ 3Hn1 = neq1 n

eq
2 〈σv〉

[
n3n4

neq3 n
eq
4

− n1n
2

neq1 n
eq
2

]
, (1.33)

where neqX is the equilibrium density for species X and σ is the cross-section for the reaction.

We abbreviate the reaction rate as Γ = n 〈σv〉 and see that the left-hand side is on the order of nxH ,
while the right-hand side of the order of n1n2 〈σv〉. It immediately follows that if the reaction rate Γ
is much larger than H , then the factor in brackets must approach zero. This gives us the equilibrium
condition for the reaction

n1n2

n3n4
=
neq1 n

eq
2

neq3 n
eq
4

, (1.34)

or put the other way, in order to be in equilibrium, we need Γ � H . If the reaction rates drop due to
the expansion of the universe, then the entire right-hand side will become unimportant and the number
of particles will freeze out to a constant value. After freeze-out, the number density will simply scale as
a−3.

1.6 A primer on nucleosynthesis

The conditions for reactions in equilibrium with subsequent freeze-out of the abundances naturally
produces di�erent particles in di�erent abundances (determined by their respective energies, and the
cross-sections involved). A huge success of the big bang model was that it could explain the existence of
light elements in the early universe in abundances consistent with observations. In the early Universe,
energies are high enough for processes like deuterium formation p+n→ D and the subsequent chains

D + p→ 3He + γ D + n→ 3H + γ

D +D → 4He + γ D +D → 3H + p

D +D → 3He + n ,

1See e.g. Section 3.1. in Dodelson "Modern Cosmology" [2]
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Figure 1.3: Abundance of light elements produced during Big Bang nucleosynthesis depends on the total
density of baryons. The boxes indicate observational constraints on the abundance of these elements,
the vertical stripe the region that one would get for the baryon density measured from the cosmic
microwave background radiation (see also next chapter). [From [1]]

and the existence of Helium-3 allows the formation of Helium-4 by the processes

3H + p→ 4He+ γ 3He+ n→ 4He+ γ
3H +D → 4He+ n 3He+D → 4He+ p

(1.35)

which will be followed by the formation of lithium and beryllium.

4He+D → 6Li+ γ 4He+ 3H → 7Li+ γ
4He+ 3He→ 7Be+ γ

Heavier elements will not be formed since no stable elements exist withA = 8 and the time-scale is too
short to circumvent this. All heavier elements thus must be produced at later times and this happens
in stars (up to iron) and supernovae (also heavier than iron), as you might learn from other MAUCA
courses.

1.7 Evidence for Dark Matter from nucleosynthesis

A more detailed calculation of the nucleosynthesis reactions show that the abundance of any of these
light elements depends sensitively on the initial fraction of baryonic matter (i.e. initial abundance of
protons and neutrons) as a fraction of the total matter in the Universe, see Figure 1.3. The baryonic
density parameter is called Ωb. The observed abundances of light elements are only consistent with the
predicted abundances from big bang nucleosynthesis if Ωb ∼ Ωm/5. This is very strong evidence that
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Figure 1.4: A cartoon picture of the full history of our Universe according to the Big Bang Theory. The
distance from the centre can be expressed as either distance from the Milky Way, cosmological redshift,
time or inverse of the cosmological expansion factor (although the relation between them is nonlinear).
At a �nite time, or distance, the formal ’singularity’ occurred, followed by the phase of in�ation (see
next chapter), the phase of nucleosynthesis as well as the plasma phase in which nuclei, electrons and
photons were in thermal equilibrium. At the end of it, the ions combine to neutral atoms, and the CMB
radiation is able to freely propagate towards us. The release of the CMB is followed by the ’dark ages’,
in which no photons are produced and only terminates when the �rst stars, and then the �rst galaxies
form and re-ionize the Universe. Over time, more massive galaxies form and most recently even clusters
of hundreds and thousands of galaxies.

there must be other matter present in the universe that is not like ordinary baryons, but participates
in gravity: we need enough matter to produce the correct expansion rate of the Universe, but not all
of it can be in baryons in order to be consistent with the abundance of light elements. This is a �rst
strong hint for the existence of dark matter, that we will encounter in many di�erent ways over and over
later. It will manifest itself always in this form: one needs more matter than just baryonic matter in the
Universe for observations to be consistent with theory. The easiest way out is by assuming that there is
a still undiscovered particle which does not participate in the strong and electromagnetic interactions
and thus neither interacts with light (otherwise we could see it), nor plays a role in nucleosynthesis.

1.8 A picture of the Big Bang Universe

In Figure 1.4, we collect all that we know about the history of the Universe so far and put it all in
perspective. All of the history can be drawn on a �nite time-line due to the �nite age of the Universe.
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The caption explains what goes into this cartoon picture.
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Chapter 2

The Inhomogeneous Universe

2.1 The CMB: Temperature Fluctuations

The tiny inhomogeneities in the Universe during the plasma phase become imprinted into the CMB ra-
diation. Along di�erent lines-of-sight, one thus expects minute temperature �uctuations. Temperature
�uctuation means that the best-�t temperature changes from direction to direction. The temperature-
shift is related to �uctuations in the gravitational potential from which the photons come. If they origi-
nate from an overdense region, they will lose a little bit of energy compared to the mean, and vice verse,
if they originate from an underdense region, they will gain a little bit of energy. The temperature �uc-
tuation is related to the potential �uctuation through the Sachs-Wolfe e�ect that also takes into account
the time-dilation e�ect due to the change in gravitational potential and amounts to

δT

T
=

δφ

3c2
(2.1)

in a matter-dominated Universe where δφ is the �uctuation of the gravitational potential.

The CMB temperature �uctuations have characteristic amplitudes on di�erent scales. This scale depen-
dent amplitude of �uctuations is commonly analysed in terms of a power spectrum of the �uctuations.
To understand what this means consider �rst a Fourier cosine decomposition of a one-dimensional func-
tion f(x). If the function is su�ciently regular and periodic on a domain of length D, we can always
write

f(x) =

∞∑
i=0

bi cos(kix+ φi), (2.2)

where ki = 2πi/D is the wave number, φi is a phase, and bi is the amplitude of mode ki. The amplitudes
bi carry information about how much of mode ki is in the signal, compared to other modes. Since the
CMB arrives to us on a spherical surface, on decomposes its temperature �uctuations of course into
two-dimensional functions, the spherical harmonics Y`m, so that

T (θ, φ) =

∞∑
`=0

∑̀
m=−`

a`mY`m(θ, φ), (2.3)

where Y`m = exp(imφ)Pm` (cos θ), where the Pm` are Legendre polynomials. One can then de�ne an
average at �xed ` over azimuthal valuesm to assess the amplitude contribution of �uctuations of longi-
tudinal mode ` to the signal. We want to square the amplitudes in order to have identical contributions
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Figure 2.1: The CMB temperature �uctuations around the T ∼ 2.7K black body spectrum. This map
has been obtained by the Planck satellite mission and the most accurate map to-date. Fluctuations have
an amplitude δT/T ∼ 10−5. [Copyright 2013, ESA and the Planck Collaboration]

Figure 2.2: The power spectrum of CMB temperature �uctuations. Error bars show ±1σ uncertainties
and are on large scales (small `) dominated by cosmic variance. The red line is our currently best-�t
cosmological model. Note that there are no signi�cant discrepancies for large enough l where cosmic
variance is unimportant. The bottom panel shows the di�erence between measurement and model.
[Copyright 2015, by the Planck Collaboration]
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from modes of amplitude −A and +A. This gives the angular power spectrum

C` :=
〈
|a`m|2

〉
. (2.4)

Note that for every ` there are 2`+1 values ofm over which we average so that at small values of `, one
only has very few independent measurements (e.g. only 7 for for ` = 3). The measurement of Cl for
small ` will thus be limited by our inability to assess larger volumes, and will have large error bars due
what we call cosmic variance. In Figure 2.2 you see the power spectrum of the temperature �uctuation
map from Figure 2.1.

This power spectrum contains a wealth of information about the physics of our Universe! The location
of the �rst peak depends sensitively on the total density (and thus the geometry) of the Universe and
thus sensitively constrains Ωk . The ratio of the �rst to the second peak sensitively constrains the amount
of baryons in the Universe as the sequence of peaks seen is a result of oscillations of the baryon �uid
in the dark matter density perturbations. During the time of the primordial plasma, the baryons are in
thermodynamic equilibrium with the photons meaning that the sound speed in the gas is essentially c/3
and the baryons are oscillating in and out of the dark matter density perturbations. This e�ect is called
baryon acoustic oscillation, and we will revisit it again later. There is a wealth of other information in
the CMB spectrum, some of which we will have time to touch upon, most of it is however beyond what
we can do in this class.

2.2 Evolution of Small Perturbations – Eulerian Perturbation
Theory

All structure in the Universe is thought to arise by gravitational collapse from the tiny �uctuations
we see in the CMB. We will in this Section now study how density �uctuations grow in an expanding
Universe.

2.2.1 The �uid equations in an expanding universe

Eulerian perturbation theory considers itself with solving equations for perturbations around the mean
density of the Universe. This is done in a coordinate frame that is �xed in the Universe (either expanding
or co-moving with the expansion) so that the �uid of dark matter and baryons has a non-zero velocity
with which it moves. We �rst write down the standard equations for a �uid with density ρ and velocity
u in coordinates co-moving with the expansion of the universe. These are

∂ρ

∂t
+ a−1∇(ρu) = 0 (2.5)

∂u

∂t
+ a−1u · ∇u +Hu = −a−1∇P − a−1∇φ (2.6)

a−2∇2φ = 4πG (ρ− ρ̄) . (2.7)

While they may look overwhelmingly complicated, they are actually quite simple. The �rst equation
is just the continuity equation, rewritten for an expanding universe. The second is the Euler equation
including the Hubble drag that slows down peculiar velocities (Hu), with a pressure term on the right
hand side as well as the gravitational force. The third is simply Poisson’s equation that encountered at
the very beginning. But now we have subtracted the expansion of the universe out and are left with
gravitational forces only if ρ 6= ρ̄, i.e. the inhomogeneous case.
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2.2.2 Looking at small perturbations

The next step to make this analytically tractable is to consider �uctuations only, i.e. let’s write

ρ ≡ ρ̄ (1 + δ) , u = ū + v, (2.8)

where we consider both δ and v to be small. Note that in the co-moving frame, the gradients and
time derivatives of the mean quantities will vanish! Also, we are free to choose ū = 0 without loss of
generality. If we insert them into the full set of equations, we �nd

∂δ

∂t
+ a−1∇ ((1 + δ)v) = 0 (2.9)

∂v

∂t
+ a−1v · ∇v +Hv = −a−1∇P − a−1∇φ (2.10)

a−2∇2φ = 4πGρ̄δ (2.11)

Let’s now use ρ̄ = Ωma
−3ρc = a−3Ωm3H2

0/8πG and let’s only keep terms that are linear in the
perturbation variables (if δ and v are small, any of their products will be much smaller). We shall also
make use of the fact that ∇P = ∂P

∂ρ∇ρ = c2s , where cs is the speed of sound. Then we �nd

∂δ

∂t
+ a−1∇ · v = 0 (2.12)

∂v

∂t
+Hv = −c

2
s

a
∇δ − 1

a
∇φ (2.13)

∇2φ =
3

2
H2

0 Ωma
−1δ (2.14)

Note that the advection term for the velocities has completely dropped out. We are left with a set of
coupled linear partial di�erential equations. This does not look so much better than the set of coupled
nonlinear partial di�erential equations that we started out with, but it is!

2.2.3 Linear partial di�erential equations become ordinary ones in Fourier
space

The key is that the equations are now linear. For a linear partial di�erential equations, themethod of choice
for their solution is Fourier transformation! This is because Fourier transformation turns di�erential
operators into multiplications.

To see this, let’s consider the Fourier representation of a function f(x)

f(x) =
1√
2π

∫ +∞

−∞
f̂(k) exp [ikx] dk (2.15)

∂

∂x
f(x) =

1√
2π

∫ +∞

−∞
f̂(k)

∂

∂x
exp [ikx] dk =

1√
2π

∫ +∞

−∞
ikf̂(k) exp [ikx] dk, (2.16)

i.e. the pair f(x) ↔ f̂(k) becomes the pair ∂xf(x) ↔ ikf̂(k). This means that if we Fourier trans-
form our set of linear partial di�erential equations, it will become a set of linear ordinary di�erential
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equations! Let’s do that:

∂δ̂

∂t
+ a−1ik · v̂ = 0 (2.17)

∂v̂

∂t
+Hv̂ = −c

2
s

a
ikδ̂ − 1

a
ikφ̂ (2.18)

−k2φ̂ =
3

2
H2

0 Ωma
−1δ̂. (2.19)

We see that we can express everything in terms of the velocity divergence θ = ∇ · v, θ̂ = ik · v̂ by
multiplying the second equation by ik to �nd

δ̇ = −a−1θ (2.20)

θ̇ +Hθ = θ̇ −Haδ̇ =
c2s
a
k2δ − 3

2
H2

0 Ωma
−2δ, (2.21)

where we have omitted the hat for Fourier transforms now. Taking the second time derivative of the
�rst equation yields

δ̈ = −a−1θ̇ +Ha−1θ = −a−1θ̇ −Hδ̇. (2.22)

2.2.4 Putting it all together

We see that we can combine our results into one single equation

δ̈ + 2Hδ̇ +

(
k2 c

2
s

a2
− 3H2

0 Ωm
2a3

)
δ = 0 (2.23)

Since this equation is an ordinary di�erential equation in time only, it will allow us to separate time and
spatial parts as δ(x, t) = D(t)δ(x, t0), which is a feature of such linear partial di�erential equations.
We call the functionD(t) the (linear) growth factor. Note that this equation embodies the Jeans stability
criterion! Depending on the sign of the term in brackets in the last equation, the solution will be either
growing or oscillating in time. We see that there is a critical wave number kJ which separates these
two regimes given by

kJ = a−1 3H2
0 Ωm

2c2s
. (2.24)

In the case of dark matter, cs = 0, so that there are no oscillating solutions. One can show that in that
case (and assuming one can neglect the radiation component Ωr), the growth factor takes the form:

D(a) ∝ H(a)

H0

∫ a

0

[
Ωma

′−1 + ΩΛa
′2 + (1− Ωm − ΩΛ)

]−3/2
da′, (2.25)

and one usually choosesD(t0) = 1 at the present time. In the presence of radiation, the full di�erential
equation for D has to be solved.

Exercise 6 Integrate numerically the equation for the growth factor, eq. (2.25), and plot the solutions for
various choices of Ωm and ΩΛ. Show that D(a) = a for Ωm = 1,ΩΛ = 0.
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Exercise 7 Re-derive similarly to what we did above, from the full nonlinear �uid equations, the linearised
equations for the evolution of a �uid of dark matter and baryons, coupled through gravity. The linearised
equations are

∂δc
∂t

= −a−1∇ · vc (2.26)

∂δb
∂t

= −a−1∇ · vb (2.27)

∂vc
∂t

= −a−1∇φ−Hvc (2.28)

∂vb
∂t

= −a−1∇φ−Hvb −
c2s
a
∇δb (2.29)

a−2∇2φ = 4πGρ̄(fbδb + fcδc), (2.30)

where fb = Ωb/Ωm and fc = 1 − fb are the baryon fraction and cold dark matter fraction. Write a
program in Python that shows the transfer function Tc(t) = δc(t)/δc(0), Tb(t) = δb(t)/δb(0) for various
times. Choose appropriate initial conditions yourself. If you want to get fully realistic, the sound speed in
the gas is

cs =

√
γkTb
µmH

, (2.31)

where γ = 5/3 for an ideal monoatomic gas, µ = 1.22 is the mean molecular weight of the gas assuming
a Helium fraction of 24 per cent, mH is the mass of the hydrogen atom, and Tb is the kinetic temperature
of the baryons. The latter can be approximated from more involved calculations as roughly [8]

Tb(a) =
2.726 K

a

[
1 +

119a

1 + (115a)−3/2

]−1

. (2.32)

Based on numerical experiments, investigate (1) what is the e�ect of a higher baryon fraction on δc(k) and
δb(k), (2) what is the e�ect of the sound speed after recombination, (3) what changes if you change the
redshift of recombination, (4) describe how the baryon bias δb(k)/δc(k) evolves over time before and after
recombination, and (5) can you identify features seen in the CMB spectrum from Figure 2.2 in the baryon
spectrum Pb = δ2

b (k)?

Note that while this exercise shows the emergence of the baryon acoustic oscillation (BAO) in the gravita-
tionally coupled �uid of dark matter and baryons, many important e�ects are not included, most notably
the relativistic e�ect of di�erent growth rates of perturbations that are larger/smaller than the horizon.

Hints for this Exercise:
The skeleton of a Python program that numerically integrates the coupled ODEs is given in Appendix A.2.
You just have to �ll in the actual equations and get it to run.

Exercise 8 Obviously we assumed that δ � 1 when linearising the equations. What do you think will be
the dominant error when δ becomes larger? Is there a limit for δ when the solution becomes unphysical?
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Figure 2.3: Left: The evolution of the Hubble radius in a standard big bang universe (dashed gray line)
and in an in�ationary universe (solid black line). During the in�ationary phase, the Hubble radius
remains constant, while the scale factor increases dramatically. A constant physical scale will only enter
the horizon once in a standard universe, meaning that this scale can not have been in causal contact
before then. In an in�ationary universe, the scale was inside the horizon before the in�ationary phase,
then leaves it, before it re-enters it again at a later time. Note the identical behaviour of the in�ationary
phase and the dark energy phase. Right: A strongly curved region will appear more and more �at as it
is expanded. Note that during in�ation the scale factor grows by at least 1030.

2.3 Origin of Inhomogeneities and In�ation

We have encountered various conceptual puzzles or even paradoxes on our journey through the paradigm
of big bang cosmology as you may have noticed. Let’s summarise them brie�y: The big bang paradigm
has no satisfying answer in itself to the following puzzling observations

1. The horizon problem: Why are regions that can have never been in causal contact (e.g. opposite
directions on the sky) basically identical?

2. The �atness problem: Why is the curvature of the Universe so close to zero (i.e. Ωk ' 0)? There
is no a priori reason why this needs to be so, and if there is some curvature it will even grow over
time...

3. The origin of inhomogeneity: Where do the �uctuations that we observe in the CMB come from?
What determines their spectrum?

In the early 1980s Alan Guth, Andrei Linde and Paul Steinhardt had the ingenious idea that an epoch
of very rapid expansion (in fact exponentially fast, just like what we have seen for the cosmological
constant) is able to solve all three problems. How does this work?

While we will not go into the details, in�ationary theory assumes that there existed a phase in the
very early Universe the vacuum energy density was much larger than today. The energy density was
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dominated by a so called in�aton �eld, which behaves very similar to a cosmological constant Λ, just
with a much larger value than the one that dominates the universe today. We had already seen that this
means that H(a) =

√
Λ/3 and this implies that

a(t) ∝ exp

(√
Λ

3
t

)
. (2.33)

After a short period of time, this vacuum decays in a phase transition into normal matter and radiation
and the exponentially fast expansion is thus halted.

2.3.1 A solution to the horizon problem

Such a phase in the early universe has however profound consequences. To understand this, let us look
at the so-called Hubble radius RH , which is the distance at which the expansion velocity equals the
speed of light, which means that

RH(a) =
c

H(a)
. (2.34)

As we have learned before, two points separated by a distance larger than the particle horizon cannot
have been in causal contact. Since the particle horizon is di�cult to integrate, one usually simply uses
the Hubble radius to estimate the scale of causality. Since during both the in�ationary and the dark
energy dominated phase H ' const, also the Hubble radius is constant, while at the same time, the
universe expands greatly. The evolution of the Hubble radius as a function of the scale factor of the
universe is shown in the left panel of Figure 2.3. For the standard big bang cosmology (dashed gray line),
the Hubble radius increases slowly as the universe expands. Also shown in the graph is a blue line that
indicates a �xed physical length scale that is expanding along with the universe (chosen to be 100 Mpc
in the graph). We see that this line intersects the standard big bang Hubble radius �rst in the right green
point. This indicates the time when points separated by this distance �rst came into causal contact and
it thus highlights that in the standard big bang model, they could never exchange information before
that time: this is exactly the horizon problem. Now look at the curve for the in�ationary universe. Here,
during the in�ationary phase, the universe grows by about 1030 in size, while the Hubble radius remains
constant during that phase. Now the blue line indicating a constant physical scale intersects two more
times. The �rst, left, green point shows that the scale entered the Horizon well before the in�ationary
phase, allowing everything on this scale to be in causal contact. During the in�ationary phase, the
scale gets however transported outside the horizon until it re-enters the horizon at the same time as
in the standard big bang model. This solves our problem: all observables scales have been in causal
contact before in�ation allowing them to be in some kind of thermal equilibrium and thus becoming
thermodynamically identical. Then in�ation stretches them to very large scales, so that we see them
at separations that are no longer in causal contact. Note that this seems like magic, just as if there is
something moving faster than light, but it isn’t! It’s just the universe expanding, there is never any
exchange between di�erent locations that would violate the principle of relativity. So the uniformity of
the CMB is a natural consequence of cosmic in�ation.

2.3.2 ...and the �atness problem

However, in�ation does even more. It also solves the �atness problem! If we assume there is some initial
curvature along with the in�aton �eld, then

H(a) ∝
√

Λ/3 + (1− Λ/3)a−2, (2.35)
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Since during the in�ationary phase a grows exponentially fast in time, any curvature will become com-
pletely negligible! Since the curvature will become so tiny (a changes by 1030!), it will remain very
small until today, thus explaining why we observe a �at Universe. The e�ect of expansion on curvature
is rather intuitive: look at the right panel of Figure 2.3. We start with a heavily curved object, then
we stretch it by a factor of and focus on a region of the same area as before: it is still clearly curved.
However, let’s repeat this process a few more times. Once we have stretched it by a factor of 32, we
barely see any curvature any more, it has become virtually �at! This was just a factor of 32, in�ation
would stretch everything by a factor of 1030 − 1040!

2.3.3 ...and how in�ation generates perturbations

The in�ation of scales by a factor∼ 1030 has one other important consequence. If there are any random
quantum �uctuations in the in�ation �eld, they will also get stretched to cosmological scales. In�ation-
ary theory – and in fact there are many di�erent �avours – predicts that after the in�ationary phase,
these �uctuations will follow a very simple power spectrum

P (k) = |δ|2 ∝ kns , where ns ' 1, (2.36)

and ns is called the spectral index. In fact, the simplest models of in�ation already predict that ns
is slightly smaller than 1, which is exactly what is observed. Recent measurements of this indicate
that ns ' 0.96. In�ation also predicts that δ will follow a distribution that must be close to Gaussian
(due to the origin from quantum �uctuations), which again agrees with observations. The temperature
�uctuations seen in the CMB show no indication that the underlying distribution of �uctuations in the
gravitational potential that produces them deviates from a Gaussian distribution.

To summarise, in�ation solves all the big conceptual problems of the standard big bang cosmology by
introducing a phase of exponentially fast expansion in the very early universe. In this scenario, all matter
and radiation that we observe today would come from a phase transition in which the in�aton �eld
decays into a new vacuum state at the end of in�ation. It naturally explains why the CMB is so uniform,
why the Universe is �at and gives an explanation for the presence and character of inhomogeneities
from which all cosmic structure forms through gravitational instability.

2.4 Properties of Inhomogeneities – Gaussian random �elds

As we discussed above, the density perturbations generated during in�ation from quantum �uctuations
in the in�aton �eld have a Gaussian distribution in space. We have seen that they remain small until
well after the plasma phase where we can describe them by linear perturbation theory. Since linear
perturbation theory does not couple scales, the perturbations will remain Gaussian until they have
grown under gravity large enough that the linear theory breaks down. A �eld whose values follow a
Gaussian distribution is called a Gaussian random �eld. Let our density �uctuations δ(x) be such a �eld.
Since a Gaussian distribution is fully described by its mean µ = 〈δ〉 and its variance σ2 =

〈
δ2
〉
− 〈δ〉2

also a Gaussian random �eld will be described by spatial equivalents to these two moments.

The �rst just means that the following integral has well de�ned meaning

〈δ〉 =
1

V

∫
V

δ(x) d3x. (2.37)

If δ is the overdensity �eld, then its mean must vanish, i.e. 〈δ〉 = 0, for large enough volumes V . In this
case, the underlying �eld is called statistically homogeneous.
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The variance generalises to the two-point correlation function, which, for a �eld with vanishing mean,
is de�ned as

ξ(x1,x2) = 〈δ(x1) δ(x2)〉 . (2.38)
If the �eld is statistically homogeneous (i.e. the mean vanishes in large enough volumes) one can write
this as

ξ(x) = 〈δ(x′) δ(x′ + x)〉 =
1

V

∫
δ(x′) δ(x′ + x)d3x′, (2.39)

which is simply a convolution of the �eld with itself. If it is also statistically isotropic, which means that
there are no preferred directions in it, then the two-point correlation function will only be a function of
the separation of the two points r = ‖x1 − x2‖ = ‖x‖. In this case, the function ξ(r) has a very simple
meaning: it describes the excess probability, with respect to random, of �nding correlated values of δ at
separations r.

Since eq. (2.39) is a convolution, we can turn it into a simple product in Fourier space. This gives us the
power spectrum P (k) of the random �eld as〈

δ̂(k) δ̂∗(k′)
〉

= (2π)3δD(k− k′)P (k). (2.40)

The right-hand-side is only nonzero when k = k′, and since we shall assume that δ(x) is a real valued
�eld, then δ̂∗(k) = δ̂(−k) which implies that

P (k) =
1

(2π)3

∣∣∣δ̂(k)
∣∣∣2 . (2.41)

If the underlying �eld is isotropic, then there is no preferred direction for the k-vector and the �eld will
be fully described by P (k) = (2π)−3 |δ(k)|2.

This means that a statistically homogeneous and isotropic Gaussian random �eld is fully described by
its power spectrum P (k) or two-point correlation function ξ(r) which depend on the norm of k and r
only. Note also that the requirement of vanishing mean simply means that P (k = 0) = 0.

A short calculation shows that for homogeneous isotropic �elds also the following relations hold be-
tween power spectrum and two-point correlation function:

ξ(r) =
1

2π2

∫ ∞
0

k2P (k)
sin(kr)

kr
dk and P (k) = 4π

∫ ∞
0

r2ξ(r)
sin(kr)

kr
dr. (2.42)

Finally, in the limit r → 0, the two-point correlation function reduces to the variance of the �eld

σ2 =
1

2π2

∫ ∞
0

k2P (k) dk. (2.43)

While this is the point-wise variance, it is also helpful to de�ne the variance of the �eld on arbitrary
scale R. To this end, one simply �lters the underlying �eld with a low-pass �lter W: δR(x) ∗W (x),
e.g. a Gaussian, or more commonly, a top-hat �lter WTH(r,R) = 3

4πR3 Θ(R − r), where Θ(x) is the
Heaviside step function. The convolution simply becomes a multiplication in Fourier space, so that

σ2
R =

1

2π2

∫ ∞
0

k2Ŵ 2(kR)P (k) dk. (2.44)

For the top hat �lter ŴTH(kR) = 3 (sin(kR)− kR cos(kR)) /(kR)3, while for a Gaussian �lter
ŴG(kR) = exp(−(kR)2/2).
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To summarise this section: due to the Gaussian nature of density �uctuations in the young universe, and
because of the cosmological principle of homogeneity and isotropy (that was the assumption to derive
the Friedmann equation), small density �uctuations are fully characterised by their power spectrum, or,
equivalently, their correlation function.

2.5 How to generate a realisation of the early Universe - Cos-
mological Initial Conditions

When we put everything together, the �eld of density �uctuations in the young universe can be written
in a very simple form in Fourier space

δ̂(k) = Akns/2 T (k) Ĝ(k), (2.45)

where A is a constant that sets the overall normalisation, kns/2 comprises the spectrum of �uctuations
generated by in�ation (with power spectrum ∝ kns ). The function T (k) is the result of our linear
perturbation theory and is called the transfer function, and Ĝ(k) is just the Fourier transform of a
Gaussian random �eld of zero mean and unit variance. The �eld Ĝ(k) can be simply generated by
drawing a random number from a Gaussian distribution of zero mean and unit variance for each point
in space and Fourier transforming the result1. In order to �nd δ(x) one just multiplies everything in
Fourier space and transforms the result back to real space.

There is one aspect that we haven’t included yet when we discussed linear perturbation theory before.
We only performed a Newtonian calculation of the growth of perturbations, but in fact there are impor-
tant relativistic e�ects that need to be taken into account. They cause perturbations on scales that are
larger than the horizon at a given cosmic time to grow at a di�erent rate than those that are smaller than
the horizon. A detailed discussion of this is beyond the scope of this course. A convenient �tting for-
mula that takes into account the relativistic e�ects, but not the e�ect of the baryon acoustic oscillations
has been obtained by Bardeen, Bond, Kaiser & Szalay (BBKS) and reads

TBBKS(k) =
log(1 + 2.34q)

2.34q

(
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

)−1/4
, (2.46)

where q = kΩ−1
m Mpc−1. You will obtain an almost realistic transfer function for CDM and baryons if

you multiply your result from the linear theory calculation of the coupled �uid with this function.

Finally, the amplitude, that we just called A above is typically �xed by requiring that the top-hat �l-
tered variance σ2

8 on a scale of 8h−1Mpc, given by eq. (2.44), equals a given measured value. Recent
measurements of cosmological parameters indicate that σ8 ' 0.81.

Exercise 9 Compute the value of the top-hat �ltered variance σ2(R) as a function of �lter radius R for
the BBKS power spectrum. Plot σ(R) and normalise the spectrum correctly to a speci�able value of σ8.

Hint: The upper limit of the integral in eq. (2.44) being in�nity, simply choose a large value for it (depending
on R of course) and make sure that your result does not depend on it.

1In fact, the Fourier transform of a real Gaussian random �eld is also a Gaussian random �eld in Fourier space. It is however
complex, with both real part and imaginary part being Gaussian random �elds and the additional symmetry of real �elds of
δ̂∗(−k) = δ̂(k), which follows directly from the de�nition of the Fourier transform.
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Exercise 10 Create a three-dimensional realisation of the young Universe! Start by �lling a three-
dimensional array of N × N × N cells (use N = 32 or 64) with Gaussian random numbers of zero
mean and unit variance. Fourier transform the array and multiply the result with kns/2 TBBKS(k). You
will have to choose a size of the volume that this represents since the wave numbers that you will be able to
represent using such an array are k0, 2k0, 3k0 . . .

N
2 k0 in each linear dimension with k0 = 2π

L . Transform
the result back to real space. Visualize a slice of sizeN ×N from the array. Make a histogram of all values
of δ(x) – is it still Gaussian?

Calculate the power spectrum of the actual realisation. You will have to average values
∣∣∣δ̂(k)

∣∣∣2 over shells
in modulus of k, i.e. between k and k + dk for some suitable k. Compare your result to the spectrum that
you wanted to sample. What do you observe for small values of k and for large ones?

Hint: You �nd more tips and instructions how to do this in the Appendix A.3.

2.6 Lagrangian Perturbation Theory and Zel’dovich’s approxi-
mation

The equations for evolution of perturbations that we have derived in Section 2.2 were at �xed spatial
coordinates, i.e. we chose a coordinate frame which is at rest in comoving coordinates. It is however
always possible to use a coordinate frame in which we are freely moving along with the �uid. Such
a frame that is comoving with the �uid is called a Lagrangian frame. It can be easily shown that the
convective derivative in the Eulerian description becomes a simple partial derivative

D

Dt
X :=

∂X

∂t
+ v · ∇X [Eulerian] → ∂X

∂t
[Lagrangian]. (2.47)

It is clear that this will signi�cantly simplify the full nonlinear Euler equation (2.6), particularly if we
also neglect pressure forces, to become

∂v

∂t
+Hv = −a−1∇φ. (2.48)

where of course still Poisson’s equation holds for the gravitational potential

∇2φ =
3

2
H2

0 Ωma
−1δ. (2.49)

Since the Lagrangian evolution equation for v only depends on the gravitational potential, the idea
of Lagrangian perturbation theory (LPT) is to derive a perturbative expansion for it. For us it will
su�ce to only go to �rst order which will give us 1LPT, or also called the Zeldovich approximation.
Since we know that at �rst order in Eulerian perturbation theory δ(x, t) = D(t) δ(x, t = t0), we can
simply get from Poisson’s equation that then φ(x, t) = (D(t)/a(t)) φi(x) – with the initial potential
φi(x) = φ(x, t = t0). We see immediately that in an Einstein-de Sitter cosmology (Ωm = 1 and hence
D = a) the potential is constant. Even in the general case, we can rewrite eq. (2.48) as

∂v

∂t
+Hv =

1

a

∂(av)

∂t
= −D

a2
∇φi (2.50)

⇒ v = −∇φi
a

∫
D

a
dt. (2.51)
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In order to simplify this integral, we next recall that D is a solution of the second order di�erential
equation, eq. (2.23), D̈ + 2HḊ = (3/2)H2

0 Ωma
−3D. We can rewrite this using a2D̈ + 2a2HḊ =

∂
∂t (a

2Ḋ) to see that simply ∫
D

a
dt =

a2Ḋ
3
2H

2
0 Ωm

. (2.52)

We thus �nd �nally

v = − aḊ
3
2H

2
0 Ωm

∇φi. (2.53)

Since the position of the �uid parcel moves as v = aẋ, we immediately see that the position must be
given by

x = q− D
3
2H

2
0 Ωm

∇φi (2.54)

relative to an initial position q for D → 0 so that φi = φ(q). This initial position q is also called the
Lagrangian coordinate of the �uid element and one can think of it simply as a label that one attaches
to the �uid element and that stays with the �uid element for all times as it moves through the space
of Eulerian coordinates x. If we de�ne a new velocity potential ψ := −

(
3
2H

2
0 Ωm

)−1
φi, then these

equations take the particularly simple form

x = q +D∇ψ (2.55)
v = aḊ∇ψ (= aẋ). (2.56)

A �nal interesting aspect of this analysis is that the formula for the density at the location of a �uid
element can be derived by assuming mass conservation when going from Lagrangian to Eulerian frame.
Then, for any arbitrary volume V∫

V

ρ̄d3q =

∫
V

ρ̄(1 + δ(x)) d3x (2.57)

=

∫
V

ρ̄(1 + δ)

∣∣∣∣∂x∂q
∣∣∣∣d3q, (2.58)

where we have just used the Jacobian determinant when transforming integration variables in the sec-
ond equality. Since the volume V is arbitrary, the integrands have to be identical, i.e.

⇒ 1 + δ(q) =

∣∣∣∣∂x∂q
∣∣∣∣−1

=

∣∣∣∣δij +D
∂2ψ

∂qi∂qj

∣∣∣∣−1

(2.59)

=
1

(1 +Dλ1)(1 +Dλ2)(1 +Dλ3)
, (2.60)

where λi are the real eigenvalues of the second derivative tensor ∂ijψ (the eigenvalues are real because
the tensor is symmetric). Note that this is the overdensity at the Lagrangian coordinates. In order to
obtain the Eulerian density, one would need to invert the coordinates, which is not always possible.

We see that the overdensity δ will become in�nite if Dλ = −1 for one of the λ. Since D is the growth
factor, and thus monotonously increasing in time, this will always happen at some point in time if the
initial λ < 0. If λ > 0, it will never happen of course. This singularity of δ is called shell crossing:
it occurs when several �uid elements starting from di�erent initial q (i.e. with di�erent Lagrangian
coordinates) end up at the same x (i.e. at the same Eulerian coordinate). Since there are three dimen-
sions, there are four di�erent combinations of positive and negative eigenvalues in each point, and they
correspond to di�erent features of the cosmic web (see Figure 2.4).
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Figure 2.4: The cosmic web as it emerges in redshift space in galaxy redshift surveys such as the SDSS
survey (left panel) and in cosmological simulations (right panel). The di�erent structures, such as nodes,
�laments and voids are directly related to the eigenvalues of the tensor ∂2ψ/∂qi∂qj computed on the
initial Gaussian random �eld. [left panel: Copyright by the SDSS Collaboration]

Exercise 11 Calculate the particle velocities u in the Zel’dovich approximation on a grid for the power
spectrum realisation that you have already calculated in Exercise 10. Note that assuming you have δ(x) on
a grid, it is trivial to compute v̂ in Fourier space. Visualise a slice of the velocity �eld for one component,
e.g. vx.

Hint: Remember that under Fourier transform∇ → ik, so that ∇∇2 → −i k
k2 .

Exercise 12 Create an initial distribution of points located at the centres of the cells where you calculated
δ and u from the realisation of the random �eld in Exercise 11. Now use the Zel’dovich approximation to
move these points. Plot the points in a thin slice and describe what you see as time progresses.

Hint: See Appendix A.4 for help how to plot slices of points as well as 3D projections of points.

Exercise 13 Show mathematically that shell crossing occurs where the �ow converges and that it never
occurs where it diverges. Show that there are four possible combinations of converging and diverging �ow
along di�erent directions in three dimensions. Sketch the �ow patterns for each of these four possible cases.
Can you relate this analysis to what you saw visually in Exercise 12. This analysis explains the emergence
of the cosmic web.
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Chapter 3

The Nonlinear Universe

3.1 Modelling Dark Matter

For evidence for the existence of dark matter, its properties and e�orts to detect it see slides...
(Will be summarised here in text form later)

Dark matter in its simplest form has the following macroscopically de�ning properties: it is

1. nonbaryonic : it does not emit or absorb light, nor does it interact with ordinary matter other
than through gravity,

2. collisionless : it does not appreciably interact with itself except through gravity,

3. cold : it has a negligible temperature, which means that it has negligible intrinsic velocity disper-
sion.

These properties make dark matter di�erent from ordinary matter. The fact that it does not interact
with itself means also that there will be no collisions between dark matter particles that would drive it
towards a thermodynamic equilibrium state (as e.g. a Maxwell Boltzmann distribution with isotropic
velocity dispersion). In most general form, it would thus follow on macroscopic scales the collisionless
Boltzmann equation which is just a conservation equation for the phase space density f(x,v, t):

∂f

∂t
+

ṽ

a2
· ∇xf −∇xφ · ∇ṽf = 0, (3.1)

where ṽ = av and v is our usual comoving velocity1, and φ follows Poisson’s equation

∇2
xφ = 4πGρδ =

3

2
H2

0 Ωmδ/a, (3.2)

where we have used that ρ = ρcritΩma
−3.

Since f gives the density of dark matter particles in phase space, the density in con�guration (or normal)
space is given by marginalising over the velocity dimensions

n(x) =

∫
f(x,v, t) d3v =: ρ(x)/mp, (3.3)

1Note that this is a general feature that we have encountered before. Conservation laws in comoving quantities include a
Hubble drag, e.g. ∂tv+Hv = . . . which can be eliminated by using ṽ = av so that a−1∂tṽ = ∂tv+Hv. This is usually called
a super-comoving coordinate.
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where mp is the (microscropic) particle mass. The system of collisionless Boltzmann and Poisson’s
equation is usually called the Vlasov-Poisson system of equation. Basically, it simply states that the
phase space density is conserved. It is advected in con�guration space by velocities, and in velocity space
by gravitational forces. In particular, the equation implies that the phase space density is conserved
along so-called characteristics, which are the trajectories

dxi
dt

= a−2ṽ,
dṽi
dt

= −∇φ. (3.4)

This can be easily seen by writing f(xi(t), ṽi(t), t) and inserting it into the collisionless Boltzmann
equation. The equations 3.4 are however simply describing the motion of points in the gravitational
�eld given by the potential φ, given by the (separable) Hamiltonian

H =
∑
i

p2
i

2ma2
+ φ({xi}), with ṽi = pi/m. (3.5)

The last stumbling block to obtain a solution of the system is thus given by constructing a gravitational
potential from the points moving on characteristics. This is usually done by assuming that if the points
are fairly sampling f , then they can also be used to estimate a density, from which then the gravitational
force can be calculated through Poisson’s equation. This point is a little bit subtle however. Assume we
have a large numberN of points (xi,vi) that are uniformly sampling f . Then we can attach a massmb

to them so that ρ̄ = Nmp/V gives just the mean density. A simple way of estimating the density will
then be given by

ρ(x, t) = mb

N∑
i=1

δD(x− xi(t)). (3.6)

This density estimate will however not be smooth, and in fact, it can lead to arbitrarily high accelera-
tions if two points come arbitrarily close. Such accelerations would however be a pure artefact of the
sampling. In the limit N →∞ they should never appear. To this end, a better estimate is given by

ρ(x, t) = mb

N∑
i=1

δD(x− xi(t)) ∗Wh(x), (3.7)

where Wh is some softening kernel, e.g. a Gaussian kernel, that ’smears’ out each of the points on a
scale h so that nearby points overlap and the density �eld becomes smooth. This procedure is called
force softening and is needed to suppress spurious two-body e�ects. Choosing the width h is a bit like
black magic, and we will encounter this aspect in more detail later on again.

In summary, we have seen that dark matter can be described by solving for the characteristic curves of
the collisionless Boltzmann equation, along which the phase space density f is conserved. These are
simply the equations of motion of N meta-particles that are just place-holders for sampling the local
�ow in phase space. They can be used to estimate a density �eld, which, in turn, can be used to calculate
the gravitational forces. These forces are in turn used to advance the particles.

3.2 Collisionless simulations in one dimension

The simplest case, in which one can best see the peculiar properties of dark matter, is given by a 1+1
dimensional phase space, meaning we only have a one dimensional con�guration space and a one di-
mensional velocity space. The beauty of it is that we can visualise all of phase space easily, since it
is only two-dimensional (for 2+2 it is already 4 dimensional and impossible to plot without making
projections).
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3.2.1 Solving Poisson’s equation in 1D

Another signi�cant simpli�cation in 1+1 dimensions is that we can trivially solve Poisson’s equation,
since now

∂2φ

∂x2
=

3

2
H2

0 Ωma
−1δ, (3.8)

which can be integrated once to yield the gravitational force �eld F

−F (x) =
∂φ

∂x
=

3

2
H2

0 Ωma
−1

∫ x

0

δ(x′) dx′, (3.9)

Recall that δ(x) = (ρ(x)− ρ̄)/ρ̄, so that∫ x

0

δ(x′) dx′ =

∫ x

0

ρ(x′)
ρ̄

dx′ −
∫ x

0

dx′ =
M(< x)− ρ̄x

ρ̄
. (3.10)

The last equality just says that the force is given by the mass to the left of point x minus the mass one
would have at mean density at that point. Since the whole is divided by ρ̄, it is simply a statement
about distances. If we use the density estimator from eq. (3.6), one can easily see that if the particles are
contained in a �nite ’volume’ L

M(< xi)

ρ̄
− xi = (# particles to the left of xi)

L

N
− xi. (3.11)

The number of particles to the left of a given particle can be trivially found if one sorts all particles by
increasing xi, then the number of particles to the left is simply the rank of any given particle in the
sorted list minus one.

Note that this does not include any force softening yet, we will ignore it here for the moment, not least
because we can a�ord very large particle numbers in 1D.

3.2.2 Time Stepping

Since we know now how to calculate the gravitational force given the positions {xi}i=1...N of N par-
ticles, we only have to �nd a way to integrate the equations of motion for the characteristics.

One can derive an explicit time integration scheme by remembering the de�nition of derivatives as the
limit of a di�erence operation and then letting the di�erence take on a �nite value

ẋ(t) = lim
∆t→0

x(t+ ∆t)− x(t)

∆t
→ x(t+ ∆t) = x(t) + ∆t ẋ(t) (3.12)

where ∆t should be small. We can then insert the right-hand-side of the di�erential equation for ẋ(t)
and we have a forward integration scheme. In total we would have

xi(t+ ∆t) = xi(t) + ∆t a(t)−2vi(t) (3.13)
vi(t+ ∆t) = vi(t) + ∆t F (xi(t)), (3.14)

where F (xi(t)) = ∇φ|xi(t)
is the gravitational force at position xi evaluated at time t. This integration

scheme is called the forward Euler scheme. It works, but it is not particularly stable since it does not
conserve energy. This implies that in order to conserve energy, one needs to choose a very small time
step, which makes the integration costly.
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For this reason, one usually resorts to so-called symplectic time integrators. They have the nice property
that they are time-symmetric (i.e. they give back the same result if one integrates one step forward and
then one backward in time). It is a consequence of Noether’s theorem that such symmetries always lead
to conservation properties. The simplest symplectic integrator is the so-called leap-frog integrator. It
has the form

xi (t+ ∆t/2) = xi(t) +
∆t

2
a(t)−2 vi(t) (3.15)

vi(t+ ∆t) = vi(t) + ∆t F (xi (t+ ∆t/2) ) (3.16)

xi (t+ ∆t) = xi(t+ ∆t/2) +
∆t

2
a(t+ ∆t)−2 vi(t+ ∆t) (3.17)

One can easily show that this integrator is indeed symmetric now. It uses always positions already
advanced by half a time-step in order to compute the gravitational forces and then update the velocities
and similarly for the positions. Obviously, for a whole simulation, strict reversibility and thus strict
energy conservation would require that the time step ∆t is constant. This criterion is however usually
relaxed since if the variability is not too large, energy is still well conserved. The advantage of the
leap-frog scheme is also that it does not require storing intermediate data for the time integration. This
would however be the case for higher order symplectic methods.

Exercise 14 Show explicitly that the forward Euler method is not time-reversible, while the leap frog
scheme is for constant time steps.

Exercise 15 Integrate a Kepler two-body problem with the forward Euler method and with the leap frog
integrator. How does the lack of energy conservation manifest itself? What is the e�ect of the leading error
of the leap-frog integrator in this case? Do you know which quantity is not conserved?

3.2.3 Initial Conditions for Plane Wave Collapse

Now that we have a way to calculate gravitational forces and a time integration scheme, we are almost
done. All we need is initial particle positions xi(t0) and velocities vi(t0) at some initial time t0. Since
we are dealing with particles that are following the �uid �ow, we want to use Lagrangian perturbation
theory in this case to set the initial conditions. This means that we can simply use the Zeldovich ap-
proximation applied to initial overdensity perturbation δ(x, t0). The simplest initial condition that one
can imagine here is that of an initial sinusoidal density perturbation of the form

δ(x, t0) = −AD(t0) cos(k0x) with k0 =
2π

L
, (3.18)

where L is the length of the simulation volume that we want to simulate and A is some normalisation
constant. This problem of a single collapsing wave is traditionally called a Zeldovich pancake or Zel-
dovich plane wave collapse, and we will later see why. From this we can calculate the initial gravitational
potential and velocity potential to be at the initial positions q

φi(q) = A
3H2

0 Ωm
2k2

0

D(t0)

a(t0)
cos(k0q) ψ(q) = − A

k2
0

D(t0)

a(t0)
cos(k0q) (3.19)
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Figure 3.1: Phase space portrait of the plane wave collapse from an initial single sinusoidal perturbation.
Shell-crossing occurs at some ac. The left panel shows the distribution function at a = ac/10, the central
one at shell-crossing a = ac and the right panel at a much later time a = 10ac.

The initial particle positions and velocities are then given by

xi = qi +D∇ψ = qi +
A

k0

D(t0)2

a(t0)
sin(k0qi) (3.20)

vi = aḊ∇ψ =
A

k0
D(t0)Ḋ(t0) sin(k0qi)⇒ ṽi = avi (3.21)

We note that we can for simplicity often just assume that D(t) = a(t), which is true in an Einstein-
de Sitter universe (i.e. for matter domination).

Let us remember that the Zeldovich approximation predicted density singularities that were related to
certain properties of the eigenvalues of the second derivative tensor ∂2ψ/∂qi/∂qj . We can evalute the
density given in eq. (2.59) for our plane wave. We �nd

1 + δ(q) =

∣∣∣∣1 +Ak0
D(t)2

a(t)
cos(k0q)

∣∣∣∣−1

(3.22)

which will become in�nite if

Ak0 cos(k0q) = − a(t)

D(t)2
∼ −a(t)−1. (3.23)

Clearly this equation can have multiple solution in general. It will �rst happen at a time tc for the point
q = π/k0 = L/2 where the cosine is most negative at −1. For that point the condition then becomes
A = 1/(k0a(tc)) which allows us to choose the time when �rst shell-crossing appears conveniently in
terms of the amplitude.

Figure 3.1 shows the result of a simulation of the plane wave collapse. The graphs show the distribution
function f in 1+1 dimensional phase space for three times a = ac/10, a = ac and a = 10ac, before,
at, and after shell crossing. At shell crossing, the distribution function has a vertical tangent, which
implies that the density is formally in�nite. After shell crossing, gravity leads to so called �lamentation
of the distribution function, which means that it starts to roll up in ever �ner structures. Note that this
is a genuine feature of the collisionless nature of dark matter. The particles coming from the left and
right just pass through each other. No Maxwell-Boltzmann distribution (which would be a Gaussian in
the velocity dimension at every point in con�guration space) ever appears. Instead, in the region for
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which shell-crossing has happened, the distribution function folds back and forth over the same region
of space leading to a multi-stream region.

Exercise 16 Simulate the plane wave collapse yourself. You �nd a Python skeleton to run such a simu-
lation in Appendix A.5. All you need to do is add the leap-frog integrator yourself and specify the initial
conditions. Plot the solution for di�erent particle numbers at di�erent times. How does the time step in-
�uence the solution at late times? Overplot the result of the Zeldovich approximation. Where does it work
and where does it fail? Variation: instead of the single mode wave, set up random initial conditions with an
initial power spectrum P (k) ∼ k−1.

Hint: It might be more straightforward to integrate everything in terms of a instead of t. Note that dt =
da/ȧ and you can use the Friedmann equation to compute ȧ.

3.3 Collisionless simulations in three dimensions

For full three dimensional simulations both the computational e�ort and the algorithmic complexity
increases substantially. Typically, one will run three dimensional simulations on big parallel supercom-
puters. It is beyond the scope of this introduction to teach parallel programming, or even the details
of the algorithms involved, so we will just explain the underlying techniques and see what existing
software can be used to run such simulations.

3.3.1 Force calculation in three dimensions – the PM method

The �rst challenge we are facing is that in three-dimensions, a simple integral of Poisson’s equation like
eq. (3.10) will no longer be possible. There are di�erent possibilities forward.

Fourier-space solution to Poisson’s equation

We had seen before that Fourier transform can be used very e�ciently to solve Poisson’s equation, since
in Fourier space the force �eld F is just given by

F̂(k) = − ik

|k|2
δ̂(k). (3.24)

This means that if we �nd a method to compute an overdensity �eld δ(x) from the positions of the N
particles, and after solving eq. (3.24), are able to interpolate the force �eld back to the particle positions,
we should have a workable method. So let us look at this aspect next.

Mass assignment schemes

The simplest method to assign particle positions to grid cells is to associate a particle with the nearest
cell centre. This method is called Nearest-Grid-Point (NGP). It would be implemented as follows. For a
grid spacing ∆x = L/Ng , if L is the length of the computational domain and Ng the number of grid
cells per dimension, then assign the mass of a particle with coordinates (x, y, z) entirely to the cell

(i, j, k) = bx/∆x, y/∆x, z/∆xc . (3.25)
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(x,y)∆x

x

d t

x0 = x/�x� 1/2

i = bx0c
t = x0 � bx0c
d = 1� t

Figure 3.2: The Cloud-in-Cell (CIC) mass assignment scheme in one (left panel) and two (right panel)
dimensions. For a particle at location x, one determines the left grid cell i as well as the overlap of the
particle assuming a size ∆x with cell i and the neighbour i + 1. In more than one dimension, one has
to repeat this procedure for each dimension ending up with 2d intersections.

Repeating this assignment for all particles yields an estimate of the density �eld which allows evaluation
of eq. 3.24. Important: In order for a mass assignment scheme to be consistent, one has to use the
same scheme for mass assignment and back-interpolation of the force F, i.e. once we have F, we simply
look up the value from cell (i, j, k) for the particle at (x, y, z) according to eq. 3.25. Note that the force
changes discontinuously for NGP assignment as a particle moves through the grid.

At the next higher order, one can use multi-linear interpolation, which is called Cloud-in-Cell (CIC)
interpolation in the context of mass/charge interpolation methods. Instead of assigning all mass to a
single cell, one calculates the overlap of a particle of hypothetical size ∆x in each dimension with the
2d cells it can intersect in d dimensions. The procedure is illustrated in Figure 3.2. The left intersection
with cell i shall be called d, the one with the right neighbour i + 1 shall be called t. A fraction of the
mass mpd is assigned to cell i, and the remainder mpt = mp(1− d) to cell i+ 1. In three dimensions,
the respective assignments become e.g.

(i, j, k) ← mpdxdydz (3.26)
(i+ 1, j, k) ← mptxdydz

(i, j + 1, k) ← mpdxtydz

. . .

where the factor for the left cell is always the d and the one for the right the t, in total contributing
to eight cells. In the reverse interpolation, the values of the force in the eight cells are summed with
weights given by the products of t’s and d′s on the right hand side. For the CIC assignment, the force
changes linearly as the particle moves through the grid.

In principle one can go to arbitrarily higher order interpolation. The next higher order is called Triangular-
shaped-clouds (TSC) and it corresponds to quadratic multi-dimensional interpolation. It is rare that
schemes with higher order than TSC are used in computational cosmology.

These three most important assignment functions can be explicitly written out as (following the book
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by Hockney & Eastwood 1981)

WNGP(x) =

{
1 |x| ≤ H

2
0 otherwise (3.27)

WCIC(x) =

{
1− |x|H |x| < H
0 otherwise (3.28)

WTSC(x) =


3
4 −

(
x
H

)2 |x| ≤ H
2

1
2

(
3
2 −

|x|
H

)2
H
2 ≤ |x| 3H

2

0 otherwise
(3.29)

The 3D assignment function is then just the product W3d(x, y, z) = W (x)W (y)W (z).

These mass assignment schemes also have a softening e�ect on the mass distribution and facilitate to
reach the collisionless limit when the ratio of particles/cell is su�ciently high. For the “naked” particle
distribution that we had above

n(x) =

N∑
i=1

δD(x− xi), (3.30)

the density distribution after assigning the mass to the grid using an assignment functionW (x) is given
at grid point locations xg by the convolution

ρ(xg) =
m

(∆x)3

∫
d3x′ n(x′)W (xg − x′) (3.31)

where the assignment kernel for the various schemes can be shown to be in Fourier space given by the
simple formula

Ŵ (k) = (∆x)3 sincn (k/kg), (3.32)

with n = 1 for NGP, n = 2 for CIC and n = 3 for TSC. Since the back interpolation of forces to
particles utilizes the same scheme for consistency, the e�ective smoothing is Ŵ 2 so that the higher
order assignment schemes are increasingly smoother and thus e�ectively low-pass �ltered.

3.3.2 High force resolution and force splitting

One obvious problem is that the PM method does not scale well if high resolution is needed in certain
regions of space. This scenario is often the case in astrophysics due to the nature of gravity as an
attractive force. One possibility is due to introduce higher resolution meshes, deposit particles on these
higher resolution meshes and then solve using an adaptive “relaxation method” such as the adaptive
multigrid method. This is algorithmically a bit more involve, but is e.g. what is done in the Ramses
code.

A simpler alternative is to decompose the problem into a long-range force and a short range force. For
the long-range force, one can then use the PM method on a relatively coarse mesh, and for the short
range force, one can consider the direct force between particles only in their neighbourhood – since the
particles further away contribute through the PM part. Instead of the direct force, one often uses here a
tree-method (see next section) for the short range force (this is e.g. what the Gadget-2 code is doing).
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In order to achieve a consistent cut, the force is split into a long-range and short-range part using a
sigmoidal cut function in Fourier space, e.g. a Gaussian, cutting at scale rs

R̂long(k; rs) = exp(−k2r2
s) (3.33)

R̂short(k; rs) = 1− exp(−k2r2
s).

The appropriately modi�ed Green’s functions are in Fourier and real space obtained by multiplication
or convolution respectively, i.e.

Ĝ(k) = − 1

k2
R̂(k; rs) (3.34)

G(r) = −1

r
R(r; rs) (3.35)

for which we �nd in real space

Glong(r; rs) = −1

r
erf

(
r

2rs

)
(3.36)

Gshort(r; rs) = −1

r
erfc

(
r

2rs

)
.

Instead of the normal Green’s functions, one thus simply uses these truncated functions instead and
obtains a hybrid code. In order to use this approach, one simply replaces the PM Green’s function with
Glong and instead of the particle-particle interaction in the direct summation or tree force (see below),
one uses Gshort for the potential, and ∇Gshort for the force.

3.3.3 Tree-PM codes

As we have said before, while easy and relatively fast, the problem with solving Poisson’s equation on
a uniform grid is that this approach does not lend itself well to situations that require a large dynamic
range. At the same time, direct summation of individual particle-particle forces is quadratic in the
number of particles and thus becomes quickly computationally prohibitive. In such cases, e.g. in the
context of galactic dynamics, or the dynamics of star clusters, tree methods have however proven their
worth. The idea of the Barnes & Hut tree algorithm is to circumvent the N2 scaling problem in direct
summation of the mutual interactions betweenN bodies by a hierarchical approach and ‘meta’-particles
as illustrated in Figure 3.3.

At each node in the tree, one inserts a ‘meta’ particle that carries the mass and sits at the centre of mass
of the branch of the tree. The total interaction

φ(x) ∝
∑
j

1

|x− xj |
=
∑
j

1

|(x− λ)− (xj − λ)| (3.37)

sum can be multipole expanded using

1

|y + λ− xj |
' 1

|y|︸︷︷︸
monopole

−y · λ− xj
|y|3︸ ︷︷ ︸

dipole

+
1

2
yT

3(λ− xj)(λ− xj)T − I(λ− xj)
2

|y|5 y︸ ︷︷ ︸
quadrupole

+ . . . . (3.38)

If we set λ to be the centre of mass, then the dipole vanishes. The trick is now that since we know that
|xj−λ| is bounded by the space partitioning cell size, we can directly control the accuracy by accepting
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= actual particle
= meta particle

Figure 3.3: The Barnes& Hut tree algorithm. Instead of a direct summation, one organises particles in a
hierarchical tree with ‘meta’ particles located at the centre of mass of the respective sub-tree at whose
root they are located and carrying the total mass of the branch. Depending on the distance of the particle
which wishes to compute the interaction, one can replace the entire tree branch with the meta-particle
to good accuracy. For even better accuracy, one can carry out a multi-pole expansion of the branch so
that quadrupoles, etc. can also be carried along. The e�ective algorithm ends up being N logN in the
number of particles instead of N2.

a meta particle as a valid approximation for the entire branch if

θ =
`

|y| < θc, (3.39)

where ` is the cell size of the node, and θc the threshold opening angle that we set. In the limit of small
θc, one simply recovers direct summation since all nodes are opened and only the leafs are used.

The state-of-the-art codes are exploiting all existing techniques. A very promising one for very large
particle count simulations is the Fast-Multipole-Method, used e.g. in the Pkdgrav3-code, or the geo-
metric multigrid method, used e.g. in the Ramses code. The newest codes also readily utilise thousands
of GPUs to generate simulated Universes for the upcoming generations of cosmological observations.

3.3.4 Running a simulation withMusic and Gadget-2

There is no need to implement all of the techniques, you are very welcome to try out the existing
and freely available software MUSIC (https://www-n.oca.eu/ohahn/MUSIC/ to generate
cosmological initial conditions, and Gadget-2 (http://wwwmpa.mpa-garching.mpg.de/
gadget/ to run cosmological N -body simulations.

We’ll discuss in detail in the course (interactively) how to set up and start a simulation.
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3.4 Halo Finding and Merger Trees

3.4.1 Extracting gravitationally bound structures from N-body simulations

One of the most important tasks in the post-processing of cosmological simulations is the identi�cation
of gravitationally bound structures: the haloes. The existence of a local minimum of the gravitational
potential is a necessary condition for the existence of a bound structure. A local minimum of the po-
tential however corresponds also to local maximum of the matter density �eld. Thus, most halo �nders
focus on determining the region of gravitational boundness around a density maximum. Many methods
exist, below the most commonly used for isolated haloes are explained, and we discuss a few existing
software packages after. Calculations using the model spherical collapse of a single top hat perturbation
in EdS cosmology indicate that regions that are in virial equilibrium should have an overdensity ρvir of

ρvir = ∆virρc with ∆vir = 18π2 ' 178 (3.40)

where ρc is the critical density of the universe.

The Friends-of-Friends (FoF) Algorithm

Press & Davis (1982) and Davis et al. (1985) introduced the so-called friends-of-friends algorithm that is
particularly suited for N-body simulations. The algorithm builds equivalence classes among all particle
pairs in the N-body simulation whose distance falls below a given threshold. The resulting equivalence
classes thus comprise regions bounded by an isodensity surface. It is common practice to relate the
distance threshold to the mean inter-particle distance b and adopt a value of b = 0.2. This choice can
be roughly motivated by considering the density of an isothermal sphere at the virial radius. Expressed
in units of the mean inter-particle separation, b ∼ (∆vir/3)−1/3 ≈ 0.25 in this case. One main problem
of the friends-of-friends algorithm is that it tends to spuriously connect nearby haloes that are linked
by a bridge which may purely be a result of the stochastic nature of N-body simulations. This problem
is most severe in regions of high environmental density.

However, friends-of-friends haloes are not constrained in their shape by the algorithm and mass func-
tions obtained with this algorithm show a nearly universal behaviour across redshift.

The Spherical Overdensity (SO) Algorithm

The second most commonly employed halo �nding method is the spherical overdensity algorithm in-
troduced by Lacey & Cole (1994). Here, particles are ranked according to their local density. Then a
sphere is grown around the �rst particle until the mean density within that sphere falls below the virial
overdensity, i.e. the virial radius Rvir is de�ned as Mvir = M(< Rvir) (where M(< r) is the mass
enclosed in a sphere of radius r) so that

M(< Rvir)
4π
3 R

3
vir

= ∆virρc. (3.41)

All particles within the sphere make up the �rst halo and are removed from the list of density ranked par-
ticles. The procedure is then repeated with the next highest density particle left in the list and stopped,
when no more groups are found that contain a given minimum number of particles. The resulting haloes
do not su�er from spurious linking of distinct haloes. They are however spherical by de�nition which
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might not re�ect the true shape of the gravitationally bound volume. A further advantage of the spher-
ical overdensity method is that it can be readily used also in hydrodynamic simulations where particles
and mesh cells come with basically arbitrary masses so that the simple friends-of-friends algorithm can-
not be applied with a �xed distance threshold. Instead of ranking particles by their density, any method
to identify peaks of the density �eld is su�cient to serve as the starting point before growing spheres
around the peaks.

For simplicity, often 200 is used instead of 178 and haloes that are de�ned using this overdensity cri-
terion are often denoted with an index 200c, so that the usual mass de�nition for a halo is M200c.
In the sub-�eld of cosmology that uses galaxy clusters as cosmological probes, usually a higher den-
sity threshold of 500c is used that better correlates with the hot X-ray emitting region of the cluster
halo. Sometimes also the mean density is used instead of the critical density so that 200m refers to
ρvir = 200ρm = 200Ωmρc. In the presence of a cosmological constant, in principle the overdensity cri-
terion becomes time dependent and a convenient parameterisation has been given by Bryan&Norman
(1998) as

∆vir(a) = 18π2 + 82x− 39x2, with x :=
Ωma

−3

Ωma−3 + ΩΛ
− 1. (3.42)

3.4.2 Running a Halo Finder

For practical purposes, we shall use the Rockstar software package (https://bitbucket.org/
gfcstanford/rockstar).

3.5 Quantifying Large-Scale Structure

3.5.1 The Halo Mass Function

3.5.2 The Halo Correlation Function and Halo Bias
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Chapter 4

The Baryonic Universe
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Appendix A

Hints for the computational
exercises

A.1 Numerically integrating the Friedmann equation in Python

This section provides hints for Exercise 2, where a numerical solution of the Friedmann equation is
sought. For this exercise, we will need the following Python packages

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.integrate import quad

4 %matplotlib inline

We will use the scipy routine quad to numerically integrate a function. The main problem we have
to circumvent is that the limits of integration that are passed to quad cannot be vectors. This means
that we will have to write a function around quad that loops over an array of values, passes them one
by one to quad and stores the result in a new array. The skeleton to integrate the Friedmann equation
in order to �nd t(a), i.e. the cosmic time as a function of the scale factor, then might look like this:

1 def Hubble_a(a):

2 return ...

3

4 def t_of_a(a):

5 res = np.zeros_like(a)

6 for i,ai in enumerate(a):

7 t,err = quad(lambda ap : 1.0/(ap*Hubble_a(ap)),0,ai)

8

9 res[i] = t

10 return res

11

12 a = np.logspace(-8,1,100)

13

14 plt.loglog(t_of_a(a)*H0,a)
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15 plt.xlabel('t * H0')

16 plt.ylabel('a(t)')

We have not provided the implementation for the function Hubble_a=H(a) = ȧ
a , but leave this as

the main purpose of the exercise besides learning how to integrate such functions numerically. There
is one more exotic bit in this listing. We are making use of Python lambda expressions. This is just
a short hand notation for a function de�nition, i.e. we de�ne in place a nameless function that maps
ap 7→ (apH(ap))

−1, which is the function that we want to integrate over. Finally, we create an array of
100 values of logarithmically spaced scale factors 10−8 ≤ a ≤ 10, calculate the cosmic times (in units
of the Hubble time after multiplying with H0), and plot the result as time against a.

A.2 A linear dark matter + baryon model in Python

This section provides a skeleton for the time integration of the gravitationally coupled dark matter and
baryonic �uid through recombination from Exercise 7. We will use the following Python packages,
most of them as usual

1 import numpy as np

2 import matplotlib.pyplot as plt

3 from scipy.integrate import quad

4 from scipy.integrate import odeint

5 from scipy.integrate import ode

6 from scipy.special import erf,erfc

7 %matplotlib inline

Next we de�ne the usual constants, in addition the baryon fraction fb = Ωb/Ωm and the cold dark
matter fraction fc = 1− fb.

1 H0 = 70.0

2 Omegab = 0.045

3 Omegam = 0.3

4 Omegal = 0.7

5 Omegar = 8e-5

6 fb = Omegab/Omegam # baryon fraction

7 fc = 1.0-fb # CDM fraction

The more involved bit is that we need to model the recombination of the plasma and the evolution of
the baryon sound speed in some crude way. We assume that prior to recombination, the baryons are
tightly coupled to the photons and that the sound speed is cs = c/3. After recombination, we will use
the �tting formula given in the exercise to estimate the baryon temperature, and calculate the sound
speed from it (we will make this value arti�cially 20× larger in order to have the e�ect on larger scales).
Then, we can either assume instantaneous recombination at a = 10−3, or spread it out arti�cially thus
mocking that it is not instantaneous. The two functions for slow and fast recombination are just that.
Altogether we thus have something like
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1 def T_baryon(a):

2 # parameterisation of baryon temperature from Tseliakhovich & Hirata 2010

3 return 2.726/a/(1+119.*a/(1.0+(115.*a)**-1.5))

4

5 def slow_recombination( a, c1, c2 ):

6 f = 0.5*(1.0-erf((np.log10(a)+3)*16))

7 return f*c1 + (1.0-f)*c2

8

9 def fast_recombination( a, c1, c2 ):

10 if a<1e-3:

11 return c1

12 else:

13 return c2

14

15 def sound_speed(a):

16 c1 = clight/3.0

17 c0_squared = 0.0112764987

18 c2 = np.sqrt(c0_squared*T_baryon(a)) * 20.0 # we make it 20 times larger!!

19 cs = slow_recombination(a,c1,c2)

20 #cs = fast_recombination(a,c1,c2)

21 return cs

We will use the scipy function odeint to integrate the ordinary di�erential equations. It will take
an array of variables u[...] describing the current state vector. We will store in it all �elds that
we want to evolve in time, i.e. we set u = (δc, δb, θc, θb, a). The set of coupled ordinary di�erential
equations then takes the form u̇ = F (u, t) and we will also have to provide the function F taking the
right hand side of the di�erential equations, which is why we will call this function RHS. We will need
only one additional parameter (all constants we have as global variables), the wave number k that we
want to evolve. The function RHS then has the form

1 ###################################################################

2 # the RHS of the coupled equations of baryons and dark matter

3 # u[0] = delta_c

4 # u[1] = delta_b

5 # u[2] = theta_c

6 # u[3] = theta_b

7 # u[4] = a

8 def RHS(u,t,param):

9 k = param[0]

10 du = np.zeros_like(u) # make du the same shape as u

11 a = u[4]

12 H = Hubble_a(a) # we will need H(a), so calculate it

13 cs = sound_speed(a) # we will also need the sound speed at a, so get it

14

15 du[0] = ... # RHS for d delta_c / dt

16 du[1] = ... # RHS for d delta_b / dt

17 du[2] = ... # RHS for d theta_c / dt

18 du[3] = ... # RHS for d theta_b / dt

19 du[4] = ... # RHS for da / dt

20 return du
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and returns the vector du containing the right-hand-sides of the ODEs. The last thing we will need is to
set up initial conditions, and write the actual loop over the range of wave numbers k for which we want
to evolve u. For the initial conditions, we will simply set δc(t0) = 1, δb(t0) = θc(t0) = θb(t0) = 0,
we choose to start at a = 10−10 and evolve to some a = astop that we can adjust as we like. For
the wave numbers, we will choose 200 values logarithmically spaced 10−3 ≤ k ·Mpc ≤ 10. We get
something like this

1 ainit=1e-10 # the starting scale factor

2 astop=1e-4 # we want to finish at astop

3 tstart= time_of_a(ainit) # compute the cosmic time for ainit

4 tstop = time_of_a(astop) # and for astop

5

6 ## setup the initial conditions for CDM density and theta, also for baryon

7 deltac0 = 1.0

8 thetac0 = 0.0

9 deltab0 = 0.0

10 thetab0 = 0.0

11

12 ## package all initial conditions into one vector

13 uinit = np.array([deltac0, deltab0, thetac0, thetab0, ainit])

14

15 ## these will be the wave numbers k for which we compute the result:

16 kvals = np.logspace(-3,1,200)

17

18 ## setup vectors for the results deltab(k), deltac(k), ...

19 deltab = np.zeros_like(kvals)

20 deltac = np.zeros_like(kvals)

21 thetab = np.zeros_like(kvals)

22 thetac = np.zeros_like(kvals)

23 afinal = np.zeros_like(kvals)

Finally, we need the main loop with the integration. We choose a �xed number of 1000 integration steps
in logarithmic time. If we increase to larger values of k this will not be enough. In fact, the correct time
step should be chosen based on the sound speed. For simplicity we will simply choose a �xed number
and make sure that the result is converged. The main loop then looks like this

1 ## set the number of time steps in log time in a rough way

2 nsteps = 1000 # normally this should depend on k, so check convergence!

3

4 ## these will be the times at which we evaluate

5 time = np.logspace(np.log10(tstart),np.log10(tstop),nsteps)

6

7 ## loop over all wave numbers k and evolve them

8 for i,k in enumerate(kvals):

9 ## integrate the system for all times in 'time',

10 u = odeint(RHS, uinit, time, args=([k],))

11

12 ## store last result (in time) in the respective results

13 deltac[i] = u[-1,0]

14 deltab[i] = u[-1,1]

15 thetac[i] = u[-1,2]
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Figure A.1: The amplitude of dark matter and baryon density �uctuations prior to recombination at a =
10−4 (left) and some time after recombination at a = 10−2 calculated with a simple linear perturbation
approximation for the coupled �uid. The amplitudes are normalised so that δc = 1 for the lowest k that
we calculated.

16 thetab[i] = u[-1,3]

17 afinal[i] = u[-1,4]

18

19 print 'Finished integration to a=',afinal[0]

This completes the program. We can plot the results and �nd a k-dependent amplitude for δc and δb as
shown in Figure A.1 at a = 10−4.

A.3 Generating a realisation of the young Universe

Here, we seek to make a realisation of a Gaussian random �eld with a prescribed power spectrum P (k),
i.e. we want to create a density �eld δ(x) with

δ̂(k) =
√
P (k) Ĝ(k), so that P (k) ∝ δ̂(k) δ̂∗(k), (A.1)

where Ĝ(k) is a Gaussian random �eld of zero mean and unit variance. Let’s �rst begin by creating the
Gaussian random �eld. We will need the following imports in this exercise.

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import numpy.fft

4 import numpy.random

5 import matplotlib.mlab as mlab

6 %matplotlib inline
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A.3.1 Generating the realisation

First, let us create the Gaussian random �eld of size N3. This is achieved using the Python function
np.random.normal for which one can specify the size of the �eld, the mean and the variance. By
default the mean is zero and the variance is unity. Next we will plot an image of a slice of the �eld and
also visualise its distribution:

1 # create a Gaussian random field of size N

2 N = 128

3 delta0 = np.random.normal(size=[N,N,N])

4

5 # plot a slice of the field (center of box)

6 fig = plt.figure()

7 cax = plt.pcolor(delta0[:,:,N/2], vmin=-3, vmax=3)

8 plt.axis('image')

9 cbar = fig.colorbar(cax)

10

11 # plot a histogram of the values, they should follow

12 # a Gaussian distribution

13 fig2 = plt.figure()

14 n = plt.hist( np.reshape(delta0,[N*N*N]), 100, normed=1 )

15

16 # overplot a Gaussian distribution of zero mean, unit variance

17 x = np.linspace(-5,5,100)

18 y = mlab.normpdf( x, 0.0, 1.0)

19 plt.plot(x, y, 'r--', linewidth=2)

The next part is a little bit more involved. We will need to compute the three-dimensional Fourier trans-
formation of the �eld, and then multiply it with the square root of the power spectrum. Let’s assume
we have de�ned a function that returns the square root of P (k) called delta_amplitude(k).
Since δ(x) is a real valued �eld, we can use the numpy function rfftn to compute the 3D Fourier
transformation by means of an FFT (Fast Fourier Transform):

1 # compute the Fourier transform

2 fdelta0 = np.fft.rfftn( delta0 )

Now fdelta0 holds the transformed �eld, but be aware that the modes k are not ordered in a trivial
way. We can use the following piece of code to get both the vector components of k as well as the norm
k = ‖k‖:

1 Lbox = 1000 # the box size, sets the fundamental mode

2 kmin = 2.0*np.pi/Lbox # the fundamental mode of the box

3 kmax = kmin * N/2 # the Nyquist mode of each linear dimension

4

5 d=1.0/kmin/N

6 k_full = np.fft.fftfreq(N,d=d)

7 k_half = np.fft.rfftfreq(N,d=d)

8 kx,ky,kz = np.meshgrid(k_full,k_full,k_half) # get vec. components

9 k = np.sqrt(kx**2+ky**2+kz**2) # get norm k
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If you want to learn more about the data layout in FFT transformed real �elds, see here.

Now, since you have k, you can simply compute δ(k) =
√
P (k) Ĝ(k), since Ĝ is already stored in

fdelta0. The �nal result can be obtained by an inverse Fourier transformation, and we’ll once again
display a slice of the �eld as an image:

1 fdelta = ...

2

3 # transform back

4 delta = np.fft.irfftn(fdelta)

5

6 # plot a slice of the image

7 plt.pcolor(delta[:,:,N/2])

8 plt.axis('image')

A.3.2 Measuring the sampled power spectrum

Now we should have a realisation of the �eld which follows the power spectrum we wanted. Let’s verify
that this is indeed the case. For this we can estimate a power spectrum from the �eld like this:

1 # decide number of bins and set up bin boundaries

2 nbins = 20

3 kbinlimits = np.logspace(np.log10(kmin*2),np.log10(kmax),nbins+1)

4

5 # initialise fields for results

6 kbin = np.zeros(nbins)

7 Pk = np.zeros(nbins)

8 ePk = np.zeros(nbins)

9

10 # a normalisation factor we need for the FFT

11 normfac = 1.0/np.sqrt(N*N*N)

12

13 for i in range(nbins):

14 kleft = kbinlimits[i] # left bin boundary

15 kright = kbinlimits[i+1] # right bin boundary

16

17 # get indices of all values of k that fall into bin

18 ii = np.logical_and( k>kleft, k<=kright)

19

20 # get values of fdelta that belong to these k

21 data = fdelta[ ii ] * normfac

22 kbin[i] = np.mean( k[ii] )

23 Pk[i] = ...

24 ePk[i] = ...

Estimate P (k) from the mean of δ̂δ̂∗ that fall into the bin, and the error on that mean from the standard
deviation divided by the square root of the number of values in that bin. The number of values in the
bin can be obtained from len(data). Then plot the measured power spectrum against P (k). Did it
work? The result should look like what is shown in Figure A.2.
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Figure A.2: Left: A realisation of a Gaussian random �eld with a prescribed power spectrum P (k).
Right: sampled power spectrum of the �eld realisation compared to the P (k) from which we sampled.
The box size was 1 Gpc with N = 128 for a BBKS transfer function and ns = 0.961.

A.4 Plotting point distributions in projection and in 3D

A.5 Simulating Plane Wave Collapse

This is the code to compute the collapse of dark matter in 1+1 dimensional phase space. You need
to �ll in the initial conditions in function compute_Zeldovich yourself and write the leap-frog
integrator yourself. You can calculate the acceleration that you use to update the velocities by calling
data = compute_acc(data), you can then access the accelerations via data[’a’].

1 import matplotlib.pyplot as plt

2 import numpy as np

3 %matplotlib inline

4

5 Lbox = 1.0 # length of the simulation volume

6 Np = 512 # number of particles in the simulation

7

8 Omegam = 1.0

9 Omegal = 0.0

10 Omegak = 1.0 - Omegam - Omegal

11 H0 = 70.0

12

13 astart = 0.01 # starting time

14 across = 0.1 # time when shell crossing shall appear

15 astop = 0.1 # time when to stop the simulation

16

17 # calculation of the amplitude

18 amp = Lbox / (2*np.pi*across)
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1 dtype = [('q','float'),('x','float'),('v','float'),('a','float')]

2

3 def adot(a):

4 return H0 * a * np.sqrt( Omegal + Omegak/a**2 + Omegam/a**3 )

5

6 # compute initial conditions using the Zeldovich approx.

7 def compute_Zeldovich(q,a):

8 data = np.zeros(np.shape(q),dtype=dtype)

9 data['q'] = q

10 data['x'] = Lbox*q + ...

11 data['v'] = ...

12 return data

13

14 # set up the Lagrangian coordinates

15 q = np.linspace(0.0,1.0,Np)

16

17 # set up the data vector using Zeldovich approx.

18 data = compute_Zeldovich(q,astart)

The snippet above sets the global variables and the initial conditions. The �elds for q, x and v should be
initialised for all particles now. Next is the main time stepping loop, you will need to write the integrator
yourself.

1 # computes the accelerations of each particle

2 xundisp = q*Lbox

3 def compute_acc( dat ):

4 meanpos = np.mean(dat['x']) - 0.5*Lbox

5 dat = np.sort( dat, order='x' )

6 dat['a']= -(xundisp - (dat['x']-meanpos))

7 return dat

8

9 # the main time stepping loop

10 a = astart

11 da = 1e-4

12 while a<astop:

13 # drift

14 data['x'] = data['x'] + ...

15 a = a + 0.5*da

16

17 # kick

18 data = compute_acc(data)

19 data['v'] = data['v'] + ...

20 a = a + 0.5*da

21

22 #drift

23 data['x'] = data['x'] + ...

24

25 istep = istep+1

26

27 print 'arrived at a=',a,' in ',istep,' time steps'
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In order to see the phase space spirals, you need to plot data[’x’] against data[’v’].
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