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Abstract

This paper discusses dynamo action in generalisations of the Ponomarenko
dynamo at large magnetic Reynolds number. The original Ponomarenko dynamo
consists of a spiralling flow in which the stream surfaces are concentric cylinders
of circular cross section, and the flow depends only on distance from the axis in
cylindrical polar coordinates.

In this study, the stream surfaces are allowed to be cylinders of arbitrary cross
section, and the flow is only required to be independent of the coordinate along the
cylinder axes. For smooth flows alpha and eddy diffusion effects are identified, in
terms of the geometry of the stream surfaces, and asymptotic formulae for growth
rates in the limit of large magnetic Reynolds number are obtained. Numerical
support for these results is presented using direct simulation of dynamo action
in selected flows at high conductivity. Finally the case is considered when in
spherical polar coordinates the flow is independent of the azimuthal coordinate
and the stream surfaces, which are tori, have arbitrary cross sections.

1. Introduction

The Ponomarenko dynamo is perhaps the simplest of all dynamos. In cylindrical polar
coordinates, the flow field depends only on the distance r from the axis of the coordinate
system. In the original paper of Ponomarenko (1973) the flow has a piecewise constant
axial velocity W (r) and angular velocity Q(r). Inside a cylinder of a given radius the
fluid is in solid body motion, of axial translation and uniform rotation, while outside the
fluid is at rest. All the differential rotation, leading to the stretching of magnetic field,
is concentrated at the cylinder boundary where the flow is discontinuous. This, together
with the effect of diffusion in cylindrical geometry, allows dynamo action to take place.
Ponomarenko dynamos have been discussed as models of magnetic field generation in
galactic jets (Shukurov & Sokoloff 1993), and form the basis of experiments to realise a
laboratory dynamo (Gailitis et al. 1987, 1999, Gailitis 1993). We also note the close relation
between the Ponomarenko geometry and the earlier exact dynamo models of Lortz (1968).

The simplicity of Ponomarenko’s original model allows the dispersion relation to be
written down analytically in terms of Bessel functions, and growth rates can be obtained
numerically for critical values of the magnetic Reynolds number R (Gailitis & Freiberg
1980) and asymptotically for large R (Roberts 1987). In fact at large R the dynamo is
technically a fast dynamo, the maximum growth rate being of the order of the turn-over
time scale, independent of R as R — oo (Gilbert 1988). This fast behaviour is however
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intimately connected with the discontinuity of the flow, which introduces a zero length
scale into the problem, and is not typical of smooth chaotic fast dynamos (see Childress
& Gilbert 1995, section 5.4.1).

The model of Ponomarenko may be extended in many ways. The basic mechanism
is very general: differential rotation generates azimuthal and axial field from radial field,
while diffusion in curved geometry closes the dynamo loop by regenerating radial field
from azimuthal field. The simplest extension is to allow the flow field to be continuous,
say a smooth function of radius, while retaining cylindrical stream surfaces. This is studied
numerically by Solovyev (1985, 1987) and asymptotically by Gilbert (1988) and Ruzmaikin,
Sokoloff & Shukurov (1988). The basic mechanism remains the same but the scalings
change, because the differential rotation is now distributed in radius. The fastest growing
modes have growth rates p = O(R~'/3) and wave numbers of order R'/3. The dynamo is
thus slow; see Basu (1997) for a general result along these lines.

In the limit of large R the magnetic modes localise on stream surfaces given by a
resonance condition, that the shear at the stream surface should be aligned with the
magnetic field lines. In fact on some stream surfaces dynamo action is not possible at high
R. To obtain amplification on a given stream surface at large R, it is necessary that the
fluid flow in its neighbourhood should obey a purely geometrical condition, that the pitch
of the shear should not change too rapidly with radius, namely

!/
AEME (LY
4 |dr W' (r)
(Gilbert 1988, Ruzmaikin et al. 1988).

The aim of the present paper is to generalise Ponomarenko dynamos further. We
shall stay within the class of smooth flows, but broaden the range of possible geometries.
This paper considers three obvious ways in which this can be done. First we can allow the
stream surfaces to become cylinders of arbitrary cross section. Secondly we can allow the
axial z-velocity to be an arbitrary smooth function of z and y, rather than being constant
on stream surfaces. These first two generalisations allow us to study dynamo action on
stream surfaces in general flows independent of the z-coordinate. Finally we can replace
the Cartesian geometry by a spherical polar geometry with coordinates (7,6, ¢), in which
the flow is independent of the azimuthal ¢-direction.

It is clear that in these generalisations the basic Ponomarenko mechanism must still
be present and lead to amplification under certain conditions. We shall consider the astro-
physically important limit of large magnetic Reynolds number, in which the magnetic field
becomes localised on stream surfaces and an analytical approach based on this becomes
possible. For low R, the field is more diffuse and normally one must resort to computer
simulation to obtain growth rates. Nevertheless high- R asymptotic results are a useful
guide to the generation of field in flows even when the actual values of R may be quite
modest; for example high- R asymptotics may give accurate critical values of R for dynamo
instability (see section 5 below, and figure 9). We shall obtain asymptotic formulae for
growth rates at large R, and to generalise the dynamo criterion (1.1) above. We note
that the formulae we obtain will inevitably involve integrals around stream surfaces that
capture the geometrical complications of the flow fields, and that these must usually be
evaluated numerically in all except the simplest fluid flows.

r

<1 (1.1)
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The more general geometry we consider is relevant to modelling and numerical simu-
lation of dynamos. The present paper is motivated by our observations of dynamo action
in convective rolls with persistent axial flows, obtained in simulations of rotating sheared
convection in a plane layer (Ponty, Gilbert & Soward 2000). In certain regimes dynamo
action occurs by the Ponomarenko mechanism and visualisation of the magnetic field shows
clearly the correct form of spiralling tubes of field localised on a stream surface. However
in these quite complicated systems there is no reason why the stream surfaces should be
cylindrical, nor why the velocity along the rolls should be constant on stream surfaces.

Another example is given by Plunian, Marty & Alemany (1999) who model flows
in the cooling systems of nuclear reactors using a cellular flow. Their numerical study
of kinematic dynamo action reveals growth through the Ponomarenko mechanism, and
through competing ‘Roberts modes’ in which magnetic fields are localised on the separa-
trices between neighbouring cells (see Roberts 1970, Childress 1979, Soward 1987). Other
flows with a similar stream surface topology to the smooth Ponomarenko dynamo, but
now in spherical polar coordinates, are the roll dynamos of Dudley & James (1989) (see
their equations (24-26)). These have toroidal stream surfaces on which the Ponomarenko
dynamo mechanism could occur, although we are not aware of any studies at large R.

All the classes of flows we consider fall within the study of Soward (1990), whose
very general framework of hybrid Eulerian-Lagrangian coordinates allows magnetic field
generation localised on stream surfaces, together with fluctuating flows that go to zero with
increasing magnetic Reynolds number (see Braginsky 1964a,b). Although this framework
certainly includes all the models we study in this paper, Soward (1990) does not derive
formulae for growth rates, except in special cases, nor does he generalise the criterion (1.1).
Our aim is to obtain explicit formulae which may be used and tested numerically. We find
it easiest to set up a coordinate system that is immediately adapted to the classes of
Ponomarenko dynamos we consider and to obtaining asymptotic growth rates numerically
(see section 5.2), rather than adapt the very general framework of Soward (1990).

The paper is organised as follows. In section 2 we consider the first of our models.
Working in Cartesian coordinates the flow is given by u = (=1, 95, W) where ¢ (z.y) is
the stream function and the vertical flow W is constant on stream surfaces. We set up a
coordinate system based on the shape of the stream surfaces, and rewrite the induction
equation in this system. Our choice of coordinates is aimed to simplify the advection
and stretching of the magnetic field as far as possible, and we can then approximate
the processes of diffusion so as to pick up only important terms in the limit of large R.
When this is done we obtain a dynamo driven by an alpha effect, which we call «,,, that
immediately generalises the results of Gilbert (1988) and Ruzmaikin et al. (1988). We
note that an example studied by Soward (1990) falls into the family of flows we discuss in
section 2. In section 5 of Soward (1990) an integrable ABC flow with A =0 and B # C is
considered, which corresponds to ¢y = —B cosz — Csiny and W () = — in our notation.
Soward finds dynamo action by the Ponomarenko mechanism, obtains explicit growth rates
and determines the regions of the flow in which dynamo action can occur.

In section 3 we generalise the model of section 2 by allowing the vertical flow W to
have an arbitary dependence on z and y, no longer being constrained to be constant on
stream surfaces. This complicates our coordinate system and introduces a new alpha effect,
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ag. Section 4 develops a purely analytical example to illustrate the results of sections 2
and 3. We assume that the flow has elliptical stream lines and determine «,, and «j in
terms of the flow parameters. We test the results of sections 2 and 3 numerically, using
large-scale simulations of kinematic dynamo action in a plane layer, in section 5.

We extend our earlier results to the case when the flow is independent of azimuthal
angle in spherical polar coordinates in section 6 (see also the discussion in section 6 of
Soward 1990). The stream surfaces are then tori of arbitrary cross section. Although
the curved geometry complicates matters, the calculations very much parallel the case for
Cartesian coordinates, and again there are two alpha effects that may be isolated. Finally
section 7 offers some discussion.

2. Cartesian geometry with vertical velocity W ()

We consider the dimensionless induction equation,
db+u-Vb—b-Vu=eV?b, V-b=V-u=0, (2.1a,b)

asymptotically in the limit ¢ — 0, which corresponds to the limit of large magnetic
Reynolds number R = e~1. We use Cartesian coordinates (z,y,z) with corresponding
unit vectors {X,y,z}. Consider a flow independent of the vertical z-direction, taking the
form

u=ug(z,y)+Wilx,y)z; (2.2)

the horizontal part of the velocity ugy is defined using a stream function 9 (z, y),
U = —O R+ 0,0 § = 2 x Voh = -V x (42). (2.3)

In this section we restrict W to the case when W = W (v); the general case is considered
in section 3. This condition that the vertical velocity is uniform on each stream surface is
useful as it simplifies the advection operator d; below, and is a property satisfied by many
well-known kinematic dynamo models (e.g., Roberts 1970).

2.1. Coordinate system

To begin with we will ignore the z-direction and z-component W of velocity, and
consider motion under the stream function 9 in the (z, y)-plane only. We set up a new co-
ordinate system (reminiscent of action—angle variables) adapted to the stream line topology
and to the differential rotation in the flow (see Rhines & Young 1983, Bassom & Gilbert
2000). We use the stream function 1 as one coordinate. On a given stream line an ad-
vected fluid element has period T'(¢). The element travels a distance ds in time dt = ds/q
with ¢ = |ug|. We assume that ¢ is nowhere zero on the stream line, so that ug has no
stagnation points, and define an angle coordinate ¥ by

A = oy dt= QW) di=0W) " (a=|unl, QW) =20/TW),  (24)



with a suitable choice of origin ¥ = 0. Clearly ¥ changes by 27 during one complete
traversal of the stream line and Q(¢) is an angular velocity, constant on stream lines. We
do this for all stream lines to define 9 as a coordinate and then use (¢,9) coordinates in
place of (z,y)-coordinates (see figure 1).

If we now reinstate the z-coordinate and vertical velocity W (v), a fluid element pas-
sively advected in the fluid flow has coordinates (1), 1, z) which obey

=0, 9=9(y), z=W(@). (2.5)
Correspondingly the advection operator becomes
di =0 +u-V=0+Q)0s +W(9)0,. (2.6)

Using the Cauchy solution we may obtain the motion of field vectors in the case of zero
diffusion, ¢ = 0 in (2.1). Consider a magnetic field vector frozen in the flow, represented
by increments (6%, 019, z) in the coordinates, proportional to the components

by =b-Ve, by=b-VYI, b,=b-z; (2.7)
plainly these components will obey
diby =0, diby = Q' (¢Y)by, dib, = W' ()by (e =0), (2.8)

from differentiating (2.5).

In equation (2.7) we are using the basis {V, V¥, 2} to measure magnetic field com-
ponents. These vectors are linearly independent (as g # 0) and form a right-handed set.
We denote the reciprocal basis by {e,, ey, 2z}, as shown in figure 2. To relate these bases
consider a small element of fluid determined by small changes d%) and 69 in the coor-
dinates. This element is also spanned by the vectors d1¢ e, and 69 ey, and so has area
(ey X ey - 2) 01 Y. In a short time 6t, ¥ changes by an amount (v) ¢, corresponding
to the passage of an area 2(¢))(ey X ey - z) 69 6t of fluid between the stream lines ¢ and
1 + 61. However this must be equal to 1 0t by the property of the stream function that
01 is the flux of fluid between two stream lines given by 1 and v + d1. Hence

ey xep-2=(VepxVI-2)"" =Q(y)". (2.9)
Thus we obtain the reciprocal basis vectors explicitly as
e, = Q) 'VI xz, ey=Q) 'ax Vi =Q) ug. (2.10a,b)

Using the properties of reciprocal bases, from (2.7) the magnetic field may be written as
b = bwew + byey + b, z.



2.2. Diffusion

The calculations in the previous subsection using the Cauchy solution for e = 0
simplify the left-hand side of the induction equation (2.1a). For general €, this now becomes

diby = eV - Vb, (2.11a)
diby — Q' (Y)by, = VI - VDb, (2.11Db)
dib, — W' ()by = €2 - V°b (2.11c)

from (2.8). Note that there is a source term on the left-hand side of the second and third
of these equations whereby by and b, fields are generated by differential rotation from the
by field: this is an ‘omega effect’. However to complete the dynamo ‘loop’ we require
some means of regenerating b, field and this can only occur through diffusion in curved
geometry. To obtain this ‘alpha effect’ we must expand the Laplacian above as

V?b = e, V2by + ey V2by + 2V,

, , (2.12)
+ Qwa - Ve¢ + 2Vby - Vey + bwv €y + byV-ey.
The terms appearing in the by equation are
Vip - V?b = V2by + 2V - (Vby - Vey,) + 2V - (Vby - Vey) (2.13)

+ by Vo - Vey + by Vi) - Vey.

In the Ponomarenko dynamo the b, field is small compared with the other field components
at high R, as will be made explicit when we rescale variables in the next section. As a
result the second and fourth terms above are certainly subdominant, leaving behind

Vip - Vb =~ V2by, + 2V - (Vby - Vey) + by Vep - Vey. (2.14)
We need to know more of the latter two terms, and so we expand these as

2V - (Vby - Veg) + by Ve - Viey
= 2Vy - (V- Vey)Oyby +2Vep- (VI - Vey)dsby  (2.15)
+2VY - (2 Vey)d.by + (Vi - VZey)by
= (2Xa0y + 2Xp0s + 2X0; + Aa)by,

using V = V¢ 9y, + VI 0y + 20,. Here we have introduced quantities with Roman sub-
scripts, Aa—Aq, which represent ways in which one might be able to regenerate by, field from
by field and so close the dynamo loop.

In fact when we study the dynamo problem in the next section we will find that a
solvability condition requires us to average over the angle coordinate ¥ (on a given stream
line ¥ = 1p9). We denote this average applied to a quantity (x) by ¥ or <*>. Only terms
possessing a non-zero average will contribute to the regeneration of field and appear in
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the final equation giving the growth rate and frequency of the dynamo. We thus need to
consider the quantities A\, A\p, Ac and A\q and their averages over 9. We will find that

Ae=0, da=X=0, I =am (2.16)

and so there is only one term that has a non-vanishing average and can regenerate by, field;
this gives the key alpha effect term

X = <V - (V- Vey)>. (2.17)

8770

In the remainder of this subsection we prove the results in (2.16). The reader may choose
instead to move directly on to the next subsection.

The result A\, = 0 follows immediately as ey is independent of z. For averaging of A\,
and A\q we first prove some general results about averages. Note that from (2.4), (2.10b)

egdﬁ:uH% =qut=uH% = dr, (2.18)
and p Vi)
$ - A
Vi di = Q) Vi = Q) fds (n = v—¢)' (2.19)
using ¢ = |ug| = |V|. This gives two useful results,
27r<e19-(*)>:]isw(*)-dr:/swi-v>< (%) dS, (2.20)
2r <V - (%)> = Q(¢)% (x)-nds = Q(y) V- (x)dS (2.21)
8Sy Sy

(using Stokes’ and Gauss’ theorems). Here 05, denotes the stream line, 1) = const., on
a horizontal plane, say z = 0, and Sy, is the region inside this curve. These results are in
fact equivalent (since ey and Vi are related by (2.10b)).

First consider A,: since ey - Vi = 0,

Ma = VY- (Vip-Vey) = —ey - (Vi) - VV) = —ey - Vi|Vep|2. (2.22)
It then follows from (2.20) that A, = 0. For \q, recall that ey = Q(x)) "'ug so that

1 20
A = V- Vey = Vi - V2 “ﬁH = 5 V¥ Vg — Ve (V- Vug).  (2.23)

Using (2.21) the first of these terms averages to zero as V - ugy = 0. For the second term

Vi - (V- Vug) = Vi - (V- V(2 x Vi)

) 5 5. (2.24)
— V- (2 x V3[V9[?) = —V4 - V x (3 V9 [2).
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This averages to zero on applying (2.21).

2.8. Asymptotic analysis

We will now rescale variables in the limit ¢ — 0 of large magnetic Reynolds number,
R = 1/e. In this limit the magnetic field eigenmodes become localised on stream surfaces.
The stream surface for a given mode satisfies a resonance condition, that the shear in
the flow on that stream surface be along the lines of constant magnetic field, at least at
leading order. At this point we have a choice of how we scale the magnetic field. In the
cylindrical Ponomarenko dynamo the magnetic field may be separated into modes of the
form b oc gimO+ikz+iwt+pt iy cylindrical polar coordinates (r, 6, z). Here the real frequency
is w, and the real growth rate p. Ruzmaikin et al. (1988) consider the scalings

m,k=0(1), p=0(@"?), ¢=1+0("), (2.25)

the last equation giving the region about the resonance stream surface where the field is
localised. This scaling is appropriate if one is interested in estimating the critical value of
R, which will occur for modest values of m and k. However it does not capture the fastest
growing modes at large R, which have the scalings

m,k=0(E"3), p=0(EY?), ¢ =1+ O0(/?) (2.26)

(Gilbert 1988).

In our analysis of generalised Ponomarenko dynamos we need to scale quantities anal-
ogously to one of these scalings. Neither is ideal, as neither scaling contains the other
completely in intermediate stages of analysis, although the final results for the scaling
(2.26) do include those for (2.25). We choose to use a scaling analogous to (2.25) as it is
less elaborate, fewer rescaled quantities being required. The scales in ¥ and z will remain
of order unity, but the growing field will be localised in a neighbourhood of width O(g!/4)
about a stream surface ¥ = 9y = const.,

Y =1+ (T =0()). (2.27)
We shall however retain certain subdominant terms in the Laplacian which means that
our results will also be valid for the scaling analogous to (2.26) above. We are of course at

liberty to do this, and we shall obtain results that are uniformly valid for all wavenumbers.
With the rescaling (2.27)

V = Y4V Oy + VI 0y + 20, (2.28)
We also rescale the magnetic field as in the cylindrical Ponomarenko dynamo,
(by, bo, b,) (Y, 2,t) = (€2 By, By, B,) (W, 9) etk=Fiwt+pt, (2.29)

The vertical wavenumber k is a parameter we are free to choose, and we will take it to
be of order unity, in keeping with the scaling (2.25). The frequency and growth rate will

8



be functions of k£ and of integers m and n, introduced below, that label the modes. We
expand w and p in powers of ¢ as

w=H0+81/4H1+"', p=81/2P0+---, (2.30)

and expand () and W (¢) about g using (2.27) to write the scalar advection operator
(2.6) as a series

dy = Do+ e4Dy +€Y2Dy + - - -, (2.31a)
where (assuming the field has an e*** dependence)
Do = iTly + (s + ikWo), (2.31b)
Dy =iy + U(Q,09 + ikW), (2.31c)
Dy = illy + Py + 1U2(Q 0y + ikW})), (2.31d)

with Q¢ = Q(v), Qf = Q' (10), etc.
We are left with the induction equation (2.11) in the form

(e712dy — Ag)By = (€ *2X,00 + 20,09 + Xa) By + O(e¥*), (2.32a)
(671/2dt — Ag)By = QBy + 0(61/4), (2.32b)
(e7Y2%d, — A)B, = W, By + O('/%), (2.32¢)

using (2.12)—(2.16) and (2.28)-(2.31), with
A = |V|202 + e/*2(V0 - Vp)Dgdy + /2| VD|202 — e1/2k2. (2.33)

As mentioned above, we have retained terms in the Laplacian (2.33) that are subdominant
with the present scalings, of order '/4 or €'/2. These terms in A, all become comparable in
the other scaling (2.26) and all other terms we neglect in the analysis remain subdominant.
Note that also strictly we should expand \,, A, and Aq in a Taylor series as functions of
W about ¥ = 9. However it is easier not to at this point; again this can be thought of as
retaining subdominant terms, and is legitimate.

Now we expand

By = Byo+e/*By1+-+-, By = Bgo+e'/*By1+--, B, =By+e'/*B,i+---, (2.34)

and substitute this and (2.31) into (2.32). At order e~'/? we have

DyByo = DoByo = DoB,o = 0, (2.35)
which we solve by setting
(Byo, Boo, Bzo) = (Fy(¥), Fy (W), F(¥))e™ (2.36)
and
iIllp + im&ly + tkWy = 0. (2.37)
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Here m is an integer wavenumber of order unity, which we are free to select and which
labels different magnetic field modes. The frequency w is then fixed at leading order.
Rapid decay in space of the unknown functions in (2.36) as ¥ — +oc is assumed. Note
that once Il is fixed by (2.37), the operator Dy annihilates the function e?™?.

At the next order we have

DOBz/;l +D1B¢0 = 2020w Byy, DyBy1+D1Bys=0, DoB,;+D1B,y=0. (2.38a,b,c)
To solve these, we shall first set
imQy + kW =0, TI; =0. (2.39)

The first of these removes the term linear in ¥ in Dy and d;; this means that we are
minimising the destructive effect of differential advection. It is also a ‘resonance’ condition
fixing the stream surface ¥ = 9 in terms of m and k. In short, having fixed m and k this
condition tells us where that mode will localise (assuming there is such a surface in the
flow). Once (2.39) is applied D; annihilates terms in e?™? and the terms involving D; in
(2.38) are zero by (2.36).

Equations (2.38b,c) may now be solved in a similar form to (2.36), and this leaves
equation (2.38a) for By, which has a source term

DoBy1 = 20,00 Bgo = 20 F)()e™?. (2.40)

This equation has a solvability condition; from (2.31b) and (2.37) it is required that there
be no component in e?™? on the right-hand side, which is the case since A, = 0 from (2.16).
As a result the equation for By, can be solved and the particular integral may be written
in the form H(¥,9)e™?. We may write the solution to the full first order system as

(By1, Bo1, Bo1) = (Gy(9) + H(T,9),Gy(TV),G,(V)e™, <H(T,9)>=0. (2.41)
We now move to the important terms of order one in equations (2.32), which are:

DOB¢2 + DleL/zl + (D2 - Ak)BfL/,O = 2)\a8‘1,B191 + 2Ab819B190 + )\dBﬁ07 (2423,)
DyBys + D1Bygy + (Dy — Ay)Bgo = Q4 Byo, (2.42Db)
DoB.3 + D1B,1 + (D2 — Ag)B,o = WyBye. (2.42¢)

Again solvability of these equations for the Bj fields requires that the sums of the remaining
terms have no €™ harmonic; this is guaranteed for the terms D1 By, D1 By and D1 B,;.
Also the terms \,0y By1 and AgByo have no term in e!™? from (2.16), (2.36) and (2.41).
Thus using (2.31d), (2.33) and (2.36), solvability requires that

EFd, = Qim(meg, EF@ = QBFw, EFz = W(;Fw (2.43a,b,c)
(we recall that A, = auy,), with
2 =illy + Py + 10 (imQy + ikW) — A, (2.44)
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Api = <|V9|2>02 + eY/42im< VI - Vip>0g — e/ 2m?<|VI|?> — e'/2k2. (2.45)

o, may be identified with an alpha effect and may be evaluated by the line integral (2.17)
taken along the curve 1 = 1)y at this order.

The equations (2.43) above are coupled parabolic cylinder equations. We may combine
the first two of these as

(% = 2iman, Q) Fy = (Z + /2imam Q) (B — /2ima, Q) Fy, = 0. (2.46)
The canonical form for a parabolic cylinder equation is 3" (z) — (222 + a)y(z) = 0 and
this has solutions decaying as z — +oo provided a = —n — 1 with n = 0,1,2,... (see

Abramowitz & Stegun 1965, chapter 19). This together with (2.44) and (2.45) above fixes
the growth rates, after some straightforward calculations,

illy 4+ Py + e/2(Brm? + k2) T /2imamQh = —(n + 1) /2iy(mQl + kW) (2.47)

with
Bm = <|VI2> — 4 1<V - VY>2, 5= <|Vy|*>. (2.48)

The corresponding eigenfunction for n = 0 takes the form

Fy,Fy, F, exp(—i\lﬂ V2iy I (mQY + kW) —e/4imy 1<V - v¢>\p). (2.49)

2.4. Summary

Taking the real and imaginary parts of (2.47) and returning to unscaled quantities
(see (2.30)), we obtain the Ponomarenko dynamo growth rate given by

p ~ £/ elmam Q| —(n + 1) \Vey|mQy + kWY | —e(Bmm? + k2). (2.50)

The frequency is

w —ion — ZkW()

2.51

+ \/e|may, Q| sign(ma, Q) — (n + 1) V/eyimQl + kW sign(mQy + kW(), (251)
with

am = <V - (VI -Vey)>, (2.52a)

Bm = <|VI*> =y 1<VI-VY>2, v =<|Vy|*>. (2.52b,c)

These expressions are uniformly valid for all m, k and include the two scalings (2.25) and
(2.26). The averages are taken over the stream surface ¢ = 1y on which the resonance
condition (2.39) holds (assuming such a surface exists).

The analysis is valid provided the eigenfunction is localised as assumed, in other words
provided that on the stream surface

mQY + kW # 0. (2.53)
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If this assumption is not satisfied, it is plausible that dynamo action will still occur (as the
Ponomarenko mechanism is still present), but the field will be less localised, and further
analysis is necessary (see Ruzmaikin et al. 1988). Note that for dynamo action to occur
it is necessary that m # 0 and Qf # 0 from (2.50), and from (2.39) it then follows that
k # 0 and W{ # 0.

The result for the growth rate generalises that given by Gilbert (1988) and Ruzmaikin
et al. (1988) and takes a very similar form. The first term in (2.50) is the dynamo generation
term, including the stretching by differential rotation and the alpha effect. The second
term can be thought of as an eddy diffusion term: the changing pitch of the stream lines
near the surface ¢ = 9y tends to enhance diffusion of field, and leads to this negative-
definite term. The third term is simply molecular diffusion, averaged over the stream
surface.

At large R we also obtain a criterion for dynamo action. The first and second terms
in (2.50) scale in the same way with m and € and so are always comparable. However the
third term can be made negligible, for example by fixing m as € — 0. Thus a necessary
and sufficient condition (within this asymptotic framework) for dynamo action at high R
is that the sum of the first two terms be positive. This gives a geometrical criterion, that
on a given stream surface

4120) W'Y

vy | QW) W'@W)| _ v d
\:‘ Wg\

YY)
4 )

< |am 2.54
WWH o (25
for dynamo action to occur at high R. This again generalises immediately the dynamo
criterion of Gilbert (1988) and Ruzmakin et al. (1988). The localisation condition (2.53)
amounts to the condition that the quantity on the left-hand side of the inequality (2.54)
should not vanish.

3. Cartesian geometry with general vertical velocity W (z,y)

In this section we generalise the results of section 2 by allowing the vertical velocity W
to have an arbitrary, but smooth dependence in the plane, W = W (x, y), rather than being
restricted to be constant on stream surfaces. Looking back through section 2, the effect of
allowing a general W is that the advection operator in the form (2.6) gains a dependence
on 9 as well as . This is undesirable, and our approach is to introduce a coordinate
change so that d; again only depends on 1. Once this is done, all the complications of
the coordinate system are again pushed into the Laplacian. In this section we will not go
into as much detail as before; we will sketch our calculations and only highlight important
differences from section 2.

3.1. Geometry and asymptotics

We define an angle coordinate 1 as before, and can then write the vertical velocity as
W = W(1,49). We split this up into mean and fluctuating components

W (z,y) = W(,9) = W (%) + W (9, 9), (3.1)

12



where, as always, the bar denotes an average over 9. We now remove the ¥-dependence
in d; by changing coordinates from (v,4,z) to (¢,9,¢) with { = ((¢,9,2). Under a
transformation of this type

B B
dy = 8 + Q)dy + W (0, 9)8, = 8 + Qh)Ip + (Q(¢) a—g + W (4, 19)8—2 )ac. (3.2)
Let us define the new coordinate ( by
19,-\_/
w99 = 2= 2 0), 2.9 =0w) " [ Ww.o)do (3.3)

Using ( in place of z corresponds to replacing horizontal surfaces of constant z by distorted
horizontal surfaces ¢ = const. Note that no secular effects are introduced as it may be
verified that |V(| is always bounded. With respect to these distorted surfaces a fluid

element moves uniformly with a vertical velocity W (¢). We have
=0, I=0%) (=W (3.4)
and the advection operator is
di = 3¢ + Q)0 + W (1) 0, (3.5)
as required.

We now use the basis {V, Vi, V(} to measure field components by, by and be (cf.
(2.7)). In this new basis Vi and V4 are unchanged from the basis used in section 2.
However the third basis vector,

V(=2-VZ=2-0yZV¢— 092V, (3.6)
now has horizontal components. Equation (2.9) here yields

Vi) x V-V =V x Vi -z = Q(¢), (3.7)
and so the reciprocal basis is {fy, fy, 2} with

fy=ey,+20p7,  fy=eg+2097 =Q) (ug + W 2). (3.8)

Writing b = by fy, + byfy + bz, from (3.4) these magnetic field components obey

diby = eV - Vb, (3.9a)
diby — Q' ()by, = VI - VD, (3.9b)
dibe — W' (9)by, = eVC - VD (3.9¢)

13



Again the important issue is to track down terms with non-zero mean that generate by,
field from by field. (Helpfully, there are no source terms from the b; field.) The relevant
terms are

Vi) - (2Vby - VEg + by V2fy)
= 2Vy - (V¢ - VEy)Oyby + 2V - (VI - V) Dby (3.10a,b)
+ 2V - (V¢ - VEg)Ocby  + (Vb - V2Eg)by (3.10c,d)
= (2pa0y + 2pp09 + 2p1:0¢ + pa)by,

where we introduce coefficients p,—1q analogous to Ay—Ag in (2.15). Their properties may
be summarized by

Bo=Hq =0, [, =0am, » =o. (3'11)
There are two non-zero alpha effect terms; the first is
U, = iy, = <V - (VI - Viy)> (3.12)
which from (3.8) simplifies to

QU = <V - (VI - Vey)> = Ap. (3.13)

This is the same alpha effect as identified in section 2 in equation (2.17), and is independent
of the form of the vertical velocity W. The second term is new:

ag =, = <V - (V(- Viy)>. (3.14)

Using (3.6) and (3.8), this may be rewritten as

a =<V - (V(-Vey)>

=—<Vy - (V’gb . Veg)8¢Z> — <V - (Vﬂ . Veg)&gZ> (3.15)

= —<)\a8¢,Z> — < A0 Z>.
Here the distorted surfaces of constant ( lead to terms which contribute to the new alpha
effect, coupling ¥-field to ¢-field. The first term involves a weighted average of A,, and
although A\, = 0, this average need not be zero. The point here is that the non-uniform
vertical velocity can tilt magnetic field transverse to stream surfaces and give a net effect.
The second term involves Ap; here A\, = au;, # 0 in general in any case, but the effect
of non-uniform vertical motion is to tilt field along stream surfaces and give an extra

contribution.
For the remaining terms,

pa = Vo - (V- Vi) =V - (Vo - Vey) = Ay, (3.16)
which averages to zero. Finally we have
pa = Vip - V£ = Vip - Vey + Voo - V(09 Z 2) = Vi - Vey = Mg (3.17)
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and this averages to zero as before.

The remaining theory goes through similarly to section 2.3 with minor modifications,
in particular the replacement of z by ¢ and W by W. The Laplacians in equations (2.33)
and (2.45) acquire extra cross terms, which we do not list here for brevity. Equation (2.32a)
has an extra term 2iku. By on the right-hand side, and similarly for equation (2.42a). The
coupled parabolic cylinder equations (2.43) become

BF, = 2i(mam + kay)Fy,  BFy=Q)F,,  EF, = W,Fy, (3.18a,b,c)

and are solved mutatis mutandis as those in section 2.

3.2. Summary
We finally obtain the growth rate for the case of general vertical velocity W (z,y) as

P~ £ \/elmam + kag| || —(n + 1) Vey|mQ + kWy| —e(Bmm? + Bik? + 2Bmimk),

(3.19)
with

Oy, = <V - (Vﬂ . Ve,g)>, ar = <V - (VC . Ve,g)>, (3.20&,1))
B = <|VI*> — 4y 1<V - Vop>2, (3.20c)
Br = <|V(]2> — 47 1< V(- V2, (3.204d)
Bk = <V - V(> — 4 1<V - Vi><V( - V>, (3.20¢)
v = <|V[?>, (3.20f)

all averaged over the stream line 1) = 1. It is also required that
mQ +kWy =0,  mQl + kW, #0, (3.21a,b)

on the stream surface. In the growth rate (3.19) the first term gives the two alpha effects,
the constant «,, being the same as in section 2, while the constant «j arises from the
non-uniform vertical velocity.

For growing modes it is required that £ # 0 (for if £ = 0 then from (3.21a) m or
€)f is zero and the dynamo fails by (3.19) as the first term is zero). There are then two
possibilities: first, if W:) # 0 on the resonant surface, then necessarily m # 0 and Qp # 0
and the criterion for dynamo action on the surface becomes

() . o
W () W ()

similar to the earlier result (2.54). However another possibility is that W:) = 0 on the
resonant surface and then dynamo action can occur with m = 0, k # 0 and Q; # 0 (and

d

) W
-

Y)W ()

y ()

4

-7

= , (3.22)

1/ ‘

we also require Wg # 0 for localisation). In this case the dynamo criterion simplifies to

—
Y ‘ W (¢) ‘
41 ()
Note that in this case m = 0, the magnetic field still depends on both ¢ and z through (.

< |ak\ (323)
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4. Example of elliptical stream lines

We illustrate the theory of sections 2 and 3 by giving an example where the alpha
effects may be obtained analytically. In this way we confirm that the new alpha effect
we obtain is generally non-zero, and can see how it arises in a simple situation. We also
obtain a criterion for dynamo action at high R in this class of flows.

Consider a general smooth flow having elliptical stream lines (cf. Bassom & Gilbert
2000). Let a family of concentric ellipses in the (z,y)-plane be given by level curves of
n = ax? + by?. We define a flow around these ellipses by setting

Y= f(n)a ug = f’("?) (_Qbya 2az, 0)7 (4'1)

where f is any smooth function with f’(n) nowhere zero. Here the bracket notation refers
to components of vectors with respect to the Cartesian unit vectors {X,y,z}. The angle
coordinate ¥ is defined by

=+/n/acosd, y= msinﬁ, (4.2)

and the angular velocity is Q(¢)) = 2+/ab f'(n). This defines the flow in the horizontal
plane. Now we introduce the vertical velocity. It is sufficient to introduce a mean flow
and a harmonic in 29 (other harmonics would not contribute to the dynamo process after
averaging),

W =W () + W(,9) = g(n) + h(n) cos 29 + j(n) sin 29. (4.3)

The ¢ coordinate is defined from (3.3),
(=2-2(4,9), Z=394)""(h(n)sin20 — j(n) cos 29). (4.4)

(Note that we have discarded a function of 7 in integrating (3.3) to obtain Z; this may be
done as the lower limit in (3.3) is irrelevant). This gives the non-trivial basis vectors as

= (2az,2by,0)f'(n), VI =n""+/ab(-y,z,0), (4.5a,b)
ch =2 — 0y Z Vi) — QO 'WVY, (4.5¢)
fy=ey,+0,2%, f9=eg+Q 'Waz=Q '(ug+W2), (4.5d,e)

with
ey, = Q' y/ab (z,y,0), ey = QO rug = (ab)~Y%(=by, az,0). (4.6)

Now from these results it may be verified that

Ao = V- (Vi - Vey) = 4+/ab(a — b)zy f'(n)?, (4.7a)
M = V- (VI - Vey) = =20 tab(z? + 42 f'(n). (4.7b)

Substituting for z and y from (4.2) above and averaging over ¢ gives the first alpha effect
term as

=X =—(a+0)f'(n) (4.8a)
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from (3.13). After some calculations the second alpha effect term may be written as

_ B _(b=a)f'(n) d (nh(n)
o = — <MD 7> — <Ky 2> = N ( o (n)). (4.8b)

(from (3.15)). This is the alpha effect term from the non-uniform vertical velocity, and
vanishes if h(n) = 0 or if the stream lines are circular, a = b.
The criterion (3.22) for high-R dynamo action becomes

J;:,l,, g?l,, < ‘2(a+b)+ (b—a) fg%’, (Z—il),

(4.9)

for m # 0. For a surface with ¢’(n) = 0, the criterion for m = 0 modes is, from (3.23),

"

g
F

< \(b—a)(@)'.

7 (4.10)

\ma +b)

5. Numerical confirmation

5.1. Comparison of theory and simulation

We have confirmed the asymptotic theory developed so far in this paper by means of
direct numerical simulation of the induction equation (2.1) for chosen flow fields. We shall
consider the stream function

1 = sinx cos(my/2), (5.1)

shown in figure 3(a), and two choices of vertical velocity W

Wy = cos® z + 9%, Wy = (1 —sin®z)/1 — 32, (5.2)

shown in figures 3(b,c). For direct numerical simulations a spectral code is used to integrate
the induction equation in a plane layer with —1 < y < 1 (using insulating boundary
conditions) and periodic in z with period 27. The code is described further in Ponty et al.
(2000).

Figure 4 shows the dynamo growth rate p as a function of log;, R for the flow given
by ¥ and W; with k£ = 0.7. The numerical results are markers joined by a dashed line;
the asymptotic results of this paper are the solid line. Good agreement is seen, as R
is increased. The mode is an m = 1 mode (this emerges from the simulation), and the
magnetic field is shown in three dimensions in figure 5. According to our calculations
(explained further below) this mode should localise on the stream surface given by 9 ~
0.549, and the corresponding alpha effects are a,,, ~ 1.35 and oy ~ —0.061. For this case
the ay effect is virtually negligible in the combination ma,,, + kayg; so while the numerical
results for this flow are a good test of the analysis of section 2, to test section 3 we were
led to devise our second example.
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In this example the flow is given by ¢ and W5, and the mode with m =1, £k = 1.5
localises on the stream surface given by by 19 >~ 0.529. The corresponding alpha effects are
Qy ~ 1.34 and ap ~ —0.15. This provides a reasonable test of our analytical calculation
of aj. Numerical and analytical growth rates are plotted in figure 6. The numerical
results show three magnetic modes which are dominant in different ranges of R. In the
range 400 < R < 1100 the simulations show an m = 1 Ponomarenko mode and there is
good agreement between the theory and the simulation. The field is shown in figure 7 for
R =500. For R < 300 or R 2 1250 there are other modes, in which the magnetic field is
associated with the stagnation points on the boundary and their connecting separatrices.
Our analysis cannot capture these modes, one of which is depicted in figure 8.

As a final example we consider the flow discussed by Plunian et al. (1999) which
models the flow of liquid sodium in a fast breeder reactor. In our notation the flow is

Y =—2"%2(1 + cosz)(1 + cosy), W = —4/2 (5.3)

and has a network of square cells in which the fluid rotates and moves vertically with the
same sense in each cell. Plunian et al. (1999) find two dynamo mechanisms at work, the
Ponomarenko mechanism, and a Roberts dynamo mechanism in which the field is localised
on the cell boundaries (see Roberts 1970, Childress 1979, Soward 1987). Our aim is to
reproduce the results for the Ponomarenko mechanism only, shown in their figure 9 which
gives the critical value R, for dynamo action as a function of the wavenumber &.

Our figure 9 gives a comparison between their resultst (markers and dotted lines) and
our results (solid lines). The different curves correspond to values of m from 1 to 5, reading
from left to right. Satisfactory agreement is seen overall, in particular for the lowest critical
values of R, for each mode, and for the higher m-values. The V-shaped theoretical curves
are all related, since from (3.19) it may be checked that R.(m, k) = m3R.(1,k/m) for our
approximation. Although the Roberts mechanism dominates for certain k values, we have
not reproduced the critical curves on figure 9 for clarity, and refer the reader to figure 9
of Plunian et al. (1999) for this additional information.

Note that as R, increases for the left side of each V-shaped curve, the dynamo mode
becomes localised closer to the elliptical stagnation point (of ug) at the centre of each
cell. On the right side of each V-shaped curve, the critical mode becomes localised closer
to the separatrices bounding each cell. The theory assumes that the dynamo modes are
isolated away from points in which ug is zero, and this appears to be the reason why the
agreement does not improve significantly as one increases R, for each value of m.

We have not sought to extend the results of Plunian et al. (1999), as the thrust of
the present paper is the asymptotic theory. We note however that our asymptotics could
be useful in surveying the possibility of Ponomarenko dynamo action in wide classes of
flows, supported by full numerical simulations. Although our results are only asymptotic,
a robust criterion for validity could be devised, as the field is localised within a region whose
width 69 may be deduced from (2.49). It is required that this width be small compared
with the variation of ¢ in the flow, and that the region where the field is localised should
not overlap elliptic or hyperbolic stagnation points in ug.

T The data points for m = 1 differ in detail from those in Plunian et al. (1999), as they
have since been recalculated to greater accuracy by Dr. F. Plunian.
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5.2. Asymptotic calculations for specific examples

The asymptotic growth rates shown in figures 4, 6 and 9 are given by equation (3.19),
but this involves a number of quantities in (3.20) which are given by an average over the
resonant stream surface. These must be obtained numerically for any but the simplest
flows, and in this section we indicate how this was done. The programs use a subroutine
from the NAG library that integrates first order equations by a variable-step, variable-order
Adams method.

We begin with a flow and values of the wavenumbers m and k for the dynamo mode
we wish to explore. We make a guess at the location of the resonant stream surface ¥ = 1.
We fix three closed stream lines with 9 equal to g, ¥o + 09 with 0y < 1 fixed, and for
each of these three we integrate the equations

T=—=0y, y=0z¢, z=W, (5.4)

around one complete circuit in the (z, y)-plane. For each stream line the period T and the
total change [z] in the vertical coordinate fix Q () = 27 /T and W (¢) = [z]/T respectively.
From this we may c,alculate Qo, Qp, QF, W, Wlo and Wg using finite di,fferencing in 1.
Knowing €f, and W, we make use of the resonance condition m€Q + kW = 0. This will
generally not be satisfied with our initial guess for 1y, but we may then iterate on gy to
find the stream surface satisfying the resonance condition to any given accuracy.

Once the surface ¥ = 1y, m and k are all fixed, we integrate again to obtain x, y and
Z as functions of 9 rather than time:

da/dd = —Q() 0,0,  dy/d9 = Q) "0y, dZ/dd=Qy)TW.  (5.5)

We do this for each of the three stream lines, so that we have a good local approximation
to (v, 9), y(v,9) and Z(¢,9).

At each point on the stream line we can obtain the Jacobian matrix d(z,y)/0(¥, )
by finite differences and compute its inverse d(¢,9)/0(x,y). This gives the vectors Vi,
VY, ey = Oprx + 0pyy and ey = Oyx X + Oyyy. We can also obtain 0,7 and 0yZ at
each point on the stream line and so form £, fy and V( using (3.6) and (3.8). With these
calculations we know the bases {Vy, V3, V(} and {fy,fy,z} at each point, in terms of
the unit vectors {X,¥y,z}. As checks on this computation we recall that we know V1 and
Q()fy =ug + W2 analytically and that (3.7) also provides a check.

We can now calculate the various quantities we need for the growth rate. We can
measure <|V[2>, <|VI2>, <|V(]2>, <Vy - VI>, <V - V¢> and <V - V(> by
averaging around the stream line 9 = 1)y, which provides the g-terms in (3.20). To
compute the alpha effect terms we write these in the form

= <V - (VI - Viy)> = —<fy - (VI - VVY)>, (5.6a)
a = <V - (VC . Vfg)> = —<fy - (VC . VV¢)> (5.6b)

We can write down V'V analytically, and using our basis, average these quantities on the
stream line 1) = 9)y. It is now straightforward to compute the growth rate for any R or to
compute critical values of R, using (3.19) and (3.20).
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6. Flow in spherical geometry

Finally we move from a Cartesian geometry with flows independent of z to obtain
analogous results for a spherical polar geometry with flows independent of the azimuthal
coordinate. We give only a sketch. Define spherical polar coordinates (r, 6, ¢) with corre-

sponding unit vectors (f, é, q§) and consider flows of the form

u=ug(r,0)+W(r, 0)7‘sin9$ (6.1)
with o0 o .
— 0 2 T A: _ N
U= T 2 ing rsin6 0=VéxVy V x <rsin0 ¢) : (6.2)

With this definition ) (r, 8) is Stokes’ stream function for the flow (see, for example, Batch-
elor 1967, p. 79): the flux between two stream surfaces is 27 times the difference in 1)
between those surfaces. W is the azimuthal angular velocity.

6.1. The case W (1)

We consider first the case when the azimuthal angular velocity W is constant on
stream surfaces, W = W (1), analogously to section 2, and we follow this section closely.
In each plane ¢ = const., the motion given by ug is along curves of constant ¢, and we
may define an angle coordinate 9 as in (2.4). Once this is done, equations (2.5)—(2.11)
carry through with z replaced by ¢, and z replaced by one of the vectors

V¢ = (rsinf) 19, ey = rsinf ¢ (6.3)

as appropriate. The effects of the curved geometry only emerge when the diffusion operator
is considered. In place of (2.12) we have

V?b = e¢V2b¢ + egV2b,9 + e¢VZb¢ (6.4&)
+ 2Vb¢ . Vew + 2Vby - Vey + 2Vb¢ . Ve¢ (6.4b)
+ by V2ey + by V3ey + by V3ey. (6.4c)

The important terms are those which generate by-field from by or by components; using
V = (V)0y + (VVI)0s + (V$)0y, these may be expanded as

Vi) - (2Vby - Vey + by Ve + 2Vby - Vey + by Viey)

= 2V (Vi - Vey)dypby +2V1p - (VI - Vey)dsby (6.5a,b)
+ 2V - (Vo - Vey)Opby + (Vi) - Vey)by (6.5¢,d)
+ 2V - (Vh - Vey)Oyby + 2Veh - (VI - Vey)Opby (6.5e.1)
+ 2V - (V- Vey)dpby + (Vi - Viey)by (6.5g,h)

= (2)\a8¢ + 2Xp0p + 2X:04 + Ad)by
+ (2)\e6¢ + 2Xe0p + 2)\g8¢ + )\h)b¢.
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We have defined eight coupling terms A,—An. Most of these are unimportant; we have
/\CZ)\eZAfZ)\hZO, Xa:Xd:ngo, szam. (66)

Only one term can contribute to the dynamo process: o, = Ap
and this term is the same as that in (2.17) of section 2.

The results (6.6) can be established in a variety of manners. Using formulae for the
vector calculus operators in spherical polar coordinates (e.g., Batchelor 1967, p. 600), it
may be confirmed that A, Ae, Af, An are all zero. The proofs of the remaining results
follow those of section 2 closely. Equation (2.18) still holds, and it then follows that (2.20)
becomes

<V - (VI -Vey)>,

A

27r<e19-(*)>:]£3 (*)-dr:/S ¢-V x (x)dS, (6.7)

where again S, is the interior of the curve 1) = const. in any plane ¢ = const. However
(2.19) is modified since now ¢rsinf = |V |; consider integrating also over the angle ¢,

Vzpdﬁdqs:vw@dsdgb:sz(w)rsineﬁdsw:Q(«p)ﬁdS (ﬁzv—¢), (6.8)

where dS is the area element on the torus ¥ = const. in three-dimensional space. If we
denote this torus by 07T, and its interior by Ty, then we have in place of (2.21)

(2m)2< V) - (+)> = Q) /BT (1)-nds =) [ V-()av (6.9)

The proof that A, = 0 goes through now exactly as before. For A\gq (2.23) continues to hold
and the first term again averages to zero using (6.9). For the second term

V- (VY- Vug) = Vi - (V- V(V x V) = Vi - (Vé x Vi[Vi?)
==V v (S 59)

(cf. (6.2)) and this averages to zero by (6.9). For A, consider
V- Ve, = —r H(# +cot08) = V x (cot 0 @) (6.11)

from (6.3), and so using (6.9) Ay = 0.

Moving now into section 2.3, everything follows with minor modifications, principally
replacing z by ¢. Note that the magnetic field has a dependence as e’*?; so that k becomes
an azimuthal wave number, now restricted to be an integer. Equation (2.33) becomes

A = |V|202 + eV/42(VD - Vp)DgBy + /2| VD|202 — e'/2 (r sin 0) " 2k2. (6.12)

Equation (2.42a) acquires a new term 2Xy04B40 but since Ay = 0 this disappears on
averaging in going to (2.43). The final result is that the growth rate is given exactly as in
section 2.4, except that k% (the very last term in (2.50)) is replaced by SBik? where

Br = <(rsinf) 2> = <|V¢|*>.
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The only term affected is that representing diffusion in the azimuthal direction; the re-
maining equations and discussion in section 2.4 are unchanged.

6.2. The case W(r,0)

We now allow the azimuthal angular velocity W to be a general function of ¢ and 9.
We follow the procedure of section 3 and break W into mean and fluctuating components,

W (r,0) = W (4,9) = W (y) + W (. 9). (6.13)

We define a new coordinate ¢ analogously to (3.3) (replacing z by ¢); with this choice
equation (3.5) holds in the spherical geometry, and the calculations proceed analogously
to those in section 3. The two bases used are {V, V9, V(} and {fy,fy,e,}, with the
vectors defined analogously to those in section 3, but replacing z by V¢ and ey in (3.6)
and (3.8), respectively.

The diffusive coupling terms that need to be considered are

Vi - (2Vbyg - VEg + by V> £y + 2Vb, - Vey + be Vey)

= 2V - (Vih - VEy)Oyby + 2V - (VI - VEy)Opby (6.14a,b)
+ 2V - (V¢ - VEy)Ocby + (V) - V2Eg)by (6.14c,d)
+ 2V - (Vih - Vey)Opbe + 2V - (VI - Vey)dobe (6.14e,f)
+ 2V - (VC - Vey)dche + (Vi - Viey)be (6.14g,h)

= (2pa0y + 2up0y + 2c0¢ + pa)by
+ 2160y + 24£09 + 2p40¢ + fin)bg-

The properties of the coefficients p,—p, may be summarised by

e = pif = pn =0, By =Tg=Fs =0, [, =0am, M =0 (6.15)
and we have two alpha effect terms. The first is
O = Ty, = <V - (VI - Viy)>; (6.16)
this may be simplified to
QU = <V - (VI - Vey)> = Ap, (6.17)
which is the familar form. The second alpha effect term is
ax =, = <V - (V(- Viy)>, (6.18)

which does not simplify very much. It can be rewritten as the two terms in (3.15) for the
Cartesian case, plus an extra term arising from the spherical geometry

Ok =T, = —<Xa0ypZ> — <My Z>— QO '<Wey - (Vo-VVH)>.  (6.19)
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We now indicate why equations (6.15) hold. The vanishing of pye = Ae, pr = A¢ and
ptn = Ap follows from section 6.1. Now

ta = —£5 - (V4 - V), (6.20)
as fy - Voo = 0. If we represent the quantity VV1i explicitly using a dyadic notation,

VVY = (029)#F + (r 0,009 — 7 2061) (20 + 07)

A . (6.21)
+ (r 2034 +r710,)00 + (1710, + ™2 cot 0 Og) ) P9,
we see that
pa = —€y - (Vo - VVY) = Vip - (Vb - Vey) = A, (6.22)
and so i, = A, = 0 as in section 2. Using a similar argument
Hg = —eg - (VC-VVY) = —eys- (V- VVY) = Vi - (V- Vey) = A, (6.23)
and so g, = Xg = 0 as before. For pugq,
pa = Vip- Vi(eg +es W/Q) = Vi) - Viey = Aq, (6.24)

and again averages to zero. When this is done, we finally obtain the growth rate as in
section 3.2; all equations and discussion in that section hold for the spherical polar case
outlined here.

7. Discussion

We have analysed generalised Ponomarenko dynamos in the limit of large magnetic
Reynolds number in both Cartesian and spherical geometry. We have obtained two types
of alpha effect. The first alpha effect, which we denote «,, is very robust and is the same
in all situations. It depends only on the shape of stream lines in a horizontal plane for
Cartesian geometry, or a meridional plane for spherical geometry. The second alpha effect,
denoted «y, arises when the vertical velocity for Cartesian geometry, or the azimuthal
angular velocity for spherical geometry, is not constant on stream lines. We have also
identified diffusive effects, and given formulae for growth rates of magnetic field modes
over a wide range of scales. These are confirmed by full-scale numerical simulations in
Cartesian geometry.

Our analysis is based on a number of assumptions. One is the key condition that
mQ + kW # 0 on the stream surface, or equivalently that Q" /Q' — w" /WI # 0. In our
study the magnetic field mode must experience some differential rotation in the neighbour-
hood of the resonant surface. While it vanishes at leading order because of the resonance
condition mQY + kW = 0, it must be present at higher order to localise the mode. In the
non-generic cases where it fails to (for example when all stream lines are closed), dynamo
action will still occur but the present asymptotic framework requires modification; this is
considered for the case of circular stream lines by Ruzmaikin et al. (1988).
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Thinking of the Cartesian case for simplicity, another important assumption is that
the horizontal velocity ug should nowhere vanish on the stream surface. However direct
numerical simulations of dynamos in a plane layer show that often magnetic modes are
precisely associated with such stagnation points of uy and the separatrices joining them
(see Plunian et al. 1999, Ponty et al. 2000). It would be interesting to obtain formulae of
some generality for dynamo action in this case, building on the work of Childress (1979),
Soward (1987), Childress & Soward (1989) and Soward & Childress (1990).

In fact one can think of our study as being the one of a number of possible asymptotic
calculations of dynamo growth rates at high R in generic steady fluid flows independent of
one coordinate, say z, in an infinite fluid. If one writes down a general ug(z,y) one may
have isolated points where ugy = 0, that are either elliptic or hyperbolic with separatrices.
FElsewhere the stream lines will either be closed or form channels. We have studied in this
paper the first case, of general closed stream lines for a general W (z,y). The results could
be adapted to obtain dynamo action in the second case, of channel flows, provided the
individual stream lines are periodic and so averaging methods may be applied. This leaves
two further cases: third, dynamo action with the fields localised around hyperbolic points
joined by separatrices. Finally, there is dynamo action in channel flows in which an indi-
vidual stream line is aperiodic, and approaches arbitrarily close to hyperbolic stagnation
points. These four cases cover all the generic stream surfaces in a steady flow indepen-
dent of one coordinate, and parallel the sequence of studies of Childress and Soward listed
above, in which particular velocity fields, based on ABC flows, are considered and alpha
effects computed.

If the flow is allowed to depend on a third spatial coordinate or time, then the addi-
tional, difficult element of chaotic stretching is introduced into the flow, and other tech-
niques are required (see Childress & Gilbert 1995). Finally the study of kinematic dynamo
action presented here may form the basis of future studies of non-linear dynamo equilibra-
tion and extensions of Bassom & Gilbert (1997).
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FIGURE 1

Figure 1: A schematic depiction of coordinates (¢,9) in the (z,y)-plane.

J = const.

FIGURE 2

Figure 2: The vectors Vi, V9, e, and ey.
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Figure 3: Flows used in numerical simulations. Contour plots are shown of (a) the stream
function 1, and the vertical velocities (b) Wi and (c) Ws.
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Figure 4: Growth rate p plotted against log,, R for the flow given by v, Wi, with k =
0.7, m = 1. The numerical results are shown by markers joined by a dotted line; the
asymptotic results are shown by a solid line.

Figure 5: Growing magnetic field for the flow given by v, Wi, with £ = 0.7, m =1
and R = 500. An isosurface of constant magnetic field magnitude is shown in three
dimensions.
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Figure 6: Growth rate p plotted against log,, R for the flow given by v, Wy, with k =
1.5, m = 1. The numerical results are shown by markers joined by a dotted line; the

asymptotic results are shown by a solid line.
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Figure 7: Growing magnetic field for the flow given by v, Wy, with £ = 1.5, m =1
and R = 500. An isosurface of constant magnetic field magnitude is shown in three

dimensions.



Figure 8: Growing magnetic field for the flow given by ¢, Wy, with £k = 1.5, m =1

and R = 2000. An isosurface of constant magnetic field magnitude is shown in three
dimensions.
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Figure 9: Comparison between the results of Plunian et al. (1999) and the asymptotic
theory. Theoretical curves (solid) of log,, R, are plotted as a function of k for m =1, 2, 3,
4 and 5, reading the curves from left to right. Numerical results of Plunian et al. (1999)
are shown by markers joined by dotted lines with m = 1 (solid circles), 2 (solid squares),
3 (solid triangles), 4 (open circles) and 5 (open triangles).



