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The dynamo equations are solved numerically with a helical forcing corresponding to the Roberts flow.

In the fully turbulent regime the flow behaves as a Roberts flow on long time scales, plus turbulent

fluctuations at short time scales. The dynamo onset is controlled by the long time scales of the flow, in

agreement with the former Karlsruhe experimental results. The dynamo mechanism is governed by a

generalized � effect, which includes both the usual � effect and turbulent diffusion, plus all higher order

effects. Beyond the onset we find that this generalized � effect scales as OðRm�1Þ, suggesting the

takeover of small-scale dynamo action. This is confirmed by simulations in which dynamo occurs even if

the large-scale field is artificially suppressed.
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The aim of the dynamo theory is to understand the
physical mechanisms at the origin of magnetic fields in
planets and stars. Owing to its complexity, it is useful to
rely on simple examples for which the dynamo mechanism
is well understood. One of them is the one produced by a
periodic array of helical vortices. The laminar kinematic
dynamo regime has been studied in detail by Roberts [1],
revealing the two following features.

First, the dynamomechanism relies on a scale separation
between the flow and the magnetic field. The largest flow
scale is given by the diameter of one vortex, whereas the
magnetic field spreads over an infinite number of them.
This dynamo mechanism is described by two simultaneous
effects. The large-scale magnetic field is distorted by the
flow, resulting in a magnetic field at the scale of one vortex.
This distorted magnetic field and the flow, both at the
vortex scale, combine together to generate a large-scale
electromotive force. This large-scale electromotive force
induces a large-scale magnetic field, thus closing the loop
of the dynamo mechanism. There is even a coefficient of
proportionality between the large-scale electromotive
force and the large-scale magnetic field. It is called � in
reference to the ideas developed in the more general con-
text of the mean-field theory [2]. This dynamo mechanism
is said to be large-scale, in reference to the magnetic
spectrum which is peaked at the largest scale. One decade
ago, the Roberts dynamo was taken as the starting point for
an experimental demonstration of dynamo action [3]. The
experimental results [4] confirmed the theoretical predic-
tions [5], strongly supporting the large-scale dynamo
mechanism.

Second, in the Roberts dynamo, the magnetic energy
grows at a (slow) diffusive time scale instead of growing at
the (fast) flow turnover time scale as expected in turbu-
lent magnetohydrodynamics. Mathematically, this results
in a magnetic growth rate p ! 0 in the limit Rm ! 1, the
magnetic Reynolds number being defined as Rm ¼ UL=�,

where U and L are the characteristic flow intensity and
length scale, � being the magnetic diffusivity. This ten-
dency can be depicted directly from Ref. [1] in the curves
giving p for different values of Rm. The asymptotic law
giving p versus Rm has been derived analytically [6]
and confirmed numerically [7]. It was also shown that

� ¼ OðRm�1=2Þ, suggesting that the large-scale dynamo
mechanism vanishes in the limit of high Rm. Recent stud-
ies have shown that, for other flows, different behaviors of
� are also possible [8].
In the context of turbulent dynamos, an even steeper

scaling � ¼ OðRm�1Þ was suggested [9], due to the non-
linearities occurring in the full dynamo problem composed
of the Navier-Stokes and induction equations. This was
confirmed numerically for a flow forcing corresponding to
a time-dependent Roberts-like dynamo and for a convec-
tive forcing with rotation [10]. In that case, the dynamo
mechanism does not rely on the existence of large mag-
netic scales anymore. The energy transfers, from flow to
magnetic field, occur at scales significantly smaller than
the largest scale of the system. Small-scale dynamos gen-
erally have a higher dynamo onset than the large-scale ones
and are more difficult to obtain at Pm< 1. In Refs. [11,12],
advantage was taken from constant flow forcings inducing
long-time coherent flows, and then small-scale dynamos
have been obtained at Pm down to approximately 10�2.
For noncoherent forcings, the numerical evidences are
limited to Pm � 1 so far [10], unless other approaches
based on hyperviscosity [13] or shell models [14] are used.
Weaker quenching of � has also been found in helical
turbulence [15], challenging the previously mentioned
results.
In the present Letter, we consider the 3D time-dependent

problem of Navier-Stokes and induction equations, with a
constant forcing corresponding to the Roberts flow geome-
try. We vary the viscosity in order to explore cases from
laminar to fully turbulent flows. For a fully turbulent flow,
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we vary the diffusivity in order to study how the dynamo
mechanism varies increasing Rm and eventually determine
the transition between large-scale and small-scale dynamo
action.

We solve the following set of equations:

@U

@t
¼ �rP� ðU � rÞUþ ðB � rÞBþ �r2Uþ F; (1)

@B

@t
¼ �ðU � rÞBþ ðB � rÞUþ �r2B; (2)

where both velocity U and magnetic fieldB are assumed to
be divergenceless: r � U ¼ r �B ¼ 0. The forcing, ex-
pressed in a Cartesian frame ðx; y; zÞ, is given by

F ¼ ðsinx cosy;� cosx siny;
ffiffiffi
2

p
sinx sinyÞ: (3)

It is force-free: r� F ¼ ffiffiffi
2

p
F. In the limit of high viscos-

ity � and without Lorentz forces, the solution of (1) is given
by U ¼ F=2�, corresponding to a stationary laminar re-
gime. By decreasing �, the nonlinear term ðU � rÞU in-
creases until the flow reaches a turbulent regime. The
transition between the laminar and turbulent regime occurs
through an oscillatory state as described in Ref. [16].

For U ¼ F=2�, the solution of (2) corresponds to the
Roberts dynamo solution. The large-scale magnetic field �B
is then helicoidal and right-handed. Here �B is defined as
the average over the horizontal directions x and y. At a
given z, it is straight and aligned along one horizontal

direction. The electromotive force �E ¼ �U� �B shares the
same geometry. In addition, the flow symmetries lead to
�E ¼ � �B, implying the following simple relation:

pðk; �Þ ¼ �ðk; �Þk� �k2; (4)

where the magnetic growth rate p and the ‘‘generalized’’ �
effect [6] depend on the magnetic vertical wave number k
and the magnetic diffusivity �. The ‘‘usual’’ � effect and

turbulent diffusivity of the mean-field theory [2] would
correspond to the two first coefficients in the series expan-
sion of �ðkÞ in the limit k ! 0 [7].
We use a parallelized pseudospectral code in a periodic

box of size 2�� 2�� 4�. The choice of a box elongated
along z corresponds to a minimum magnetic vertical wave
number kmin ¼ 0:5, which we know [1,7] to be more
dynamo unstable than kmin ¼ 1. Time stepping is done
with an exponential forward Euler-Adams-Bashford
scheme.
The marginal curve above which dynamo action occurs

is plotted in Fig. 1, with Re ¼ UrmsLint=� and Rm ¼
UrmsLint=� [17]. The numerical values in the simulations
are given in Table I.
At low Re, the flow is laminar and stationary, corre-

sponding to the Roberts flow. At high Reynolds numbers,
the flow is turbulent, though it has a mean (time-averaged)
geometry converging towards a Roberts flow. This is illus-
trated in Fig. 1 in the two insets. The fact that Rmc is
almost the same for both regimes (Rmc � 11, dotted line)
suggests that it is the mean flow which plays the most
important role in the field generation, even though it is
about 40% less intense than the fluctuations.
This is a drastic difference with other cases like the one

obtained with a von Kármán flow forcing [11,18] for which
the turbulent onset is always higher than the laminar one.
This stresses the robustness of scale-separation dynamos as
previously noted [19]. In Ref. [16], a higher turbulent onset
was found though a Roberts forcing was also used. This
discrepancy comes from the fact that in Ref. [16] the
periodic box was cubic, corresponding to kmin ¼ 1. In
that case, the onset in the laminar regime is higher by a
factor of about 4 [7]. Presumably, at high Reynolds
numbers the mean flow is then not strong enough to sustain

FIG. 1 (color online). Marginal curve plotted in the ðRe; RmÞ
plane. The insets show snapshots of the flow current lines and
mean (time-averaged) isovalues of the vorticity z component
for two typical regimes: laminar (left) and fully turbulent
(right) [27].

TABLE I. The two first columns correspond to simulation
inputs: the number of Fourier modes and viscosity. The other
columns give the outputs: flow integral scale, rms velocity, mean
velocity, and critical magnetic diffusivity.

Nx � Ny � Nz � Lint=2� Urms hUi �c

642 � 128 1 1 0.5 0.5 0.28

642 � 128 0.6 1 0.83 0.83 0.47

642 � 128 0.4 1 1.25 1.25 0.71

642 � 128 0.3 0.88 1.45 1.45 0.73

642 � 128 0.2 0.87 1.71 1.5 0.55

642 � 128 0.1 0.84 2.03 1.7 0.44

642 � 128 0.09 0.83 2.09 1.7 0.46

642 � 128 0.08 0.83 2.12 1.67 0.5

642 � 128 0.06 0.77 2.22 1.53 0.7

1282 � 256 0.05 0.74 2.62 1.55 0.8

1282 � 256 0.03 0.69 2.77 1.6 0.882

1282 � 256 0.02 0.65 2.77 1.6 0.9

2562 � 512 0.01 0.59 2.69 1.71 0.82

2562 � 512 0.007 0.58 2.63 1.72 0.815

PRL 106, 154502 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

15 APRIL 2011

154502-2



dynamo action at the onset, corresponding to a small-scale
dynamo rather than a large-scale one.

At intermediate values of the Reynolds number
(Re � 102), the dynamo onset is the highest (Rmc � 25).
The clue to understand this sharp increase of Rmc lies in
the statistical properties of the flow. Indeed for such a value
of Re, the mean-flow geometry does not converge [20].
This transition state is characterized by large-scale flow
fluctuations or a lack of long-time coherence, which are
known to decrease the dynamo efficiency and then to
increase the dynamo onset [21].

At the dynamo onset, the magnetic field geometry is
again helicoidal, right-handed, and of k ¼ 0:5 wave num-
ber, as in the laminar kinematic Roberts dynamo. This is a
serious hint for a large-scale dynamo mechanism governed
by the mean flow. Thus we look for an � tensor defined by

�E ¼ � �B; (5)

where �E and �B are two outputs of the simulation. As in the

Roberts dynamo, we find that j �Bzj � j �Bxj; j �Byj and j �Ezj �
j �Exj; j �Eyj, the � tensor being then reduced to four coeffi-

cients. We find h�11i � h�22i and h�ijii�j � h�iii. Just
above or below the onset, we find that (4) holds for p ¼ hpi
and � ¼ h�11i, implying �c ¼ h�11i=k. It is another way
to emphasis that the mean-field approach derived by
Roberts applies at the onset even in a fully turbulent
regime.

From now on, we fix the viscosity � ¼ 0:02 (Re � 570)
and decrease � from 0.85 to 0.01 (Rm 2 ½13; 1100�).
The number of Fourier modes for all calculations is
1282 � 256, while the length time of resolution is always
larger than one diffusion time ð2�Þ2=�.

In Fig. 2, the mean kinetic, total, and large-scale mag-
netic energies during the saturation phase are plotted ver-
sus Rm. Here Rm ¼ UrmsLint=� with values for Urms and

Lint taken from the nonmagnetic case (Urms ¼ 2:77 and
Lint=2� ¼ 0:65). Increasing Rm, we clearly see the ten-
dency towards equipartition between kinetic and magnetic
energies and an increase followed by a decrease of the
large-scale magnetic energy.
During saturation, the �B and E geometries are again

helicoidal, right-handed, and of k ¼ 0:5 wave number.
By increasing Rm, the correlation between �B and E is
weaker than at the dynamo onset, implying a somewhat
less relevant mean-field interpretation of the results.
However, by solving (5) it is still possible to calculate
the �ij coefficients of the � tensor. Their mean values in

the saturated state are plotted versus Rm in Fig. 3 [22].
The diagonal coefficients h�11i and h�22i are found to

scale as OðRm�1Þ over two decades, suggesting that the
large-scale dynamo mechanism operating at the dynamo
onset is not the relevant one operating at high Rm. The
antidiagonal coefficients �12 and �21 do not vanish,
contrary to the kinematic Roberts dynamo and presum-
ably because of a slight z dependency of the mean flow.
They first increase versus Rm by a factor of 10 and then
follow the OðRm�1Þ scaling for higher Rm. This is
reminiscent of the catastrophic quenching in MHD tur-
bulence [9], though here the Lorentz forces for the non-
linear saturation of the � coefficients occur mainly at the
scale of the periodic box and not at smaller turbulent
scales. We note that this scaling is different from the one

found in the kinematic case: � ¼ OðRm�1=2Þ [6].
However, they are both compatible with (4). Indeed, in
our simulations k is fixed, whereas in the kinematic case

k ¼ OðRm1=2Þ [7].
For Rm< 200 we find that the nonlinear saturation

obeys a scenario similar to the one described in Ref. [23]
in the laminar regime. The Lorentz force in addition to
decreasing the mean-flow intensity modifies its geometry

FIG. 2 (color online). Kinetic (blue line), total magnetic (red
line), and large-scale magnetic (magenta line) energies versus
Rm for � ¼ 0:02 (Re � 570).

FIG. 3. The mean coefficients of the 2� 2 � tensor versus Rm,
in the saturated state, for � ¼ 0:02 (Re � 570).
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such that the magnetic energy saturates. For Rm> 50 this
modified mean flow is able to generate the growth of an
additional passive vector field with a phase shifted by �=2
[24]. For Rm> 200 this weakly nonlinear scenario does
not apply anymore due to too strong nonlinearities.
However, we find that a passive vector field is still growing,
suggesting a small-scale dynamo mechanism [25].

In order to account for such a small-scale dynamo
mechanism, we solve again Eqs. (1) and (2) but enforce
�B ¼ 0 at each time step [26], in order to suppress any
possibility of a large-scale dynamo mechanism. We find a
second onset at Rm � 200, corresponding to Pm � 0:35.
This shows that provided Rm is high enough the magnetic
field grows at small scales, the participation of the large-
scale field being sufficiently weak to be neglected in the
dynamo process. Still a OðRm�1Þ � effect may be calcu-
lated provided that the small-scale velocity and magnetic
field are sufficiently well correlated. A weak large-scale
field, enslaved to the small-scale field, may then be
generated.

In conclusion, scale separation is confirmed to be a good
candidate for liquid metal experiment dynamos at low Rm,
the turbulence having a weak effect on the mean-flow
dynamo onset. In addition, we showed that increasing
Rm, but keeping Pm< 1, yields to small-scale dynamo
action. Building an apparatus like the Karlsruhe experi-
ment [4] but less constrained would be the cost to explore,
above the onset, the competition between large-scale and
small-scale dynamo modes.
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Rheinhardt, E. Apstein, and H. Fuchs, Nonlinear Proc.
Geophys. 9, 171 (2002); Magnetohydrodynamics 38, 41
(2002); F. Plunian and K.-H. Rädler, Geophys. Astrophys.
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