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Chaos and Structures in Rotating Convection at Finite Prandtl Number
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It is shown, using a generalized Swift-Hohenberg equation, that a small rotation inhibits the spiral
chaos which develops in Rayleigh-Bénard convection at moderate Prandtl number. This is due to the
gliding and gradual annihilation of dislocations. For rigid top and bottom boundary conditions, a slow
rotation first breaks the chiral symmetry and if sufficient leads to an unfolding of the spirals. This
effect is maximum near the critical rotation for the onset of the Küppers-Lortz instability, and, when
the horizontal geometry is periodic, straight rolls may even reform. With free-slip boundaries, these
structures are subject to a small-angle instability, which leads to the formation of large coherent targets
embedded in a turbulence background. [S0031-9007(97)03542-4]

PACS numbers: 47.52.+ j, 47.20.Lz, 47.27.Te, 47.54.+r
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Thermal convection in a Boussinesq fluid with high
Prandtl numberP, rotating around a vertical axis is known
to develop spatiotemporal chaos, when the Taylor numb
Ta  t2 is larger than a critical value [1]. This dynamics
results from the Küppers-Lortz (KL) instability [2,3] which
destabilizes straight parallel rolls as soon as the Raylei
numberR exceeds the convection thresholdRc. It leads to
the formation of patches of straight rolls penetrating eac
other in a chaotic way: rolls disappear and are replaced
other rolls tilted by an angleuKL close to 58±.

At moderate Prandtl number (assumingP . 0.67 to
avoid overstability), the KL instability survives, but the
angle uKL associated with the most unstable mode de
creases with the Prandtl number, both for rigid [4,5] an
free-slip top and bottom boundaries [6]. In the latter cas
(often used in the context of astro- and geophysical flows
the usual perturbation method used to analyze the KL i
stability near convection threshold leads to a divergenc
in the small angle limit [5]. This reflects the existence o
an additional and stronger instability present in a smal
angle boundary layer [6]. This “small-angle instability”
develops whatever the value of the rotation rate and c
be viewed as the continuation of the skewed-varicose i
stability which destabilizes critical rolls near onset in the
absence of rotation [7]. At small enough Prandtl numbe
(below P ø 5), the KL and the small-angle instabilities
cannot be separated as a result of the decrease ofuKL and
the enhancement of the unstable small-angle range wh
P is reduced.

Whereas for infinite Prandtl number, the KL dynamics
can be qualitatively reproduced by a set of three amplitud
equations [8], the description of the dynamics at modera
Prandtl numbers, whereuKL is significantly smaller than
60± (uKL  38.4± for P  0.8), requires Swift-Hohenberg
type equations reproducing the correct variation of the K
instability with the Prandtl number. Such a model wa
recently derived by a perturbation expansion near thresho
[9]. In the case of free-slip top and bottom boundaries,
is obtained by a simplification of a systematically derive
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set of equations for the leading vertical velocity modeW
and the (horizontal) mean flow potentialC. In the case
of no-slip boundaries, the mean flow equation togeth
with the linear part of the equation for the convective
mode is exactly derived by projection of the mean flow
on the vertical mode sinpz (0 , z , 1) and of the
vertical velocity on the first eigenmode of the fourth
derivative operator with appropriate boundary condition
[10]. The nonlinear couplings arising in the equation
for W are selected among those present in the free-s
case, with coefficients adjusted in such a way that th
correct boundary of the zigzag instability in the absence
rotation, and the right critical rotation and most unstabl
angleuKL for the KL instability be reproduced. Denoting
by e the normalized distance from threshold, the syste
reads

t0≠tW  fe 2 sD 1 1d2gW 2 N sW , Cd , (1)

f≠t 2 Psn 1 DdgDC  s=DW 3 =W d ? ẑ

1 a6fsDWd2 1 =W ? =DW g
1 a7DsW2d , (2)

with M  W2 1 j=W j2 and

N sW , Cd  MW 1 a1=W ? =M

1 a2s=W 3 =M d ? ẑa3s=W 3 =Cd ? ẑ

1 a4WDC 1 a5=W ? =DC .

In the case of free-slip boundaries,n  a7  0. More-
over, in the absence of rotation, the coefficientsa2, a4, a5,
anda6 vanish, and the model generalizes the equations o
tained by Manneville [11] by the inclusion of an additiona
coupling. For rigid boundaries,a4  a5  0. Further-
more, the friction coefficientn is found to ben  p2yq2

c
(whereqc denotes the critical wave number) and thus de
creases as the rotation rate is increased. Note the prese
of the additional terma7DsW 2d in the mean flow equation,
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originating from the vertical Reynolds stress. A related a
though less elaborated model was independently presen
in [12].

Because of the small-angle instability arising at mod
erate Prandtl number when free-slip boundary conditio
are prescribed, the nonlinear dynamics developing in th
case is expected to be significantly different from that o
tained with rigid boundaries, and the two situations are
be discussed separately.

In the simpler case of no-slip boundaries, simulation
were performed both in a periodic geometry and in a cylin
drical box, a configuration best suited for comparison wi
laboratory experiments. In the periodic case, we used
standard Fourier pseudospectral method with resolutio
of 1282 or 2562 collocation points, according to the aspec
ratio G which measures the number of rolls in the conve
tion cell. In the presence of lateral boundaries, compa
finite differences were used in the radial direction and
Fourier decomposition performed for the angular variabl
with a resolution of91 3 240 grid points for about16 rolls
within the box. To avoid the constraint of very small time
steps, the unnecessary high resolution near the center of
box was reduced by retaining a number of nonzero angu
Fourier modes decreasing with the distance to the cen
A random noise with a spectrum localized in an annulu
centered around the critical wave number was used as
tial conditions.

We first report on the case of a periodic geometry.
the absence of rotation, for a moderate value of the Pran
number (P  1.2) and a large enough value of the stres
parameter (e  0.7), the now well documented spiral tur-
bulence state [13–19] develops. The mean flow, resulti
from roll curvature gradients, consists mostly in large
scale circulation between the structures. Vanishing exac
for perfect targets, it is small in the center of the spira
that it advects in clockwise or anticlockwise rotating mo
tions, depending on the sign of the dislocation imprisone
in the center of the structure.

As seen in Fig. 1, with a small rotation, spirals rotatin
in the direction of the external rotation are progressive
selected, as in the laboratory experiments [20]. This effe
is due to the formation of vorticity patches in the cente
of targets and spirals, whose sign is that of the rotation,
can be seen from the mean flow equation.

As the Rossby number is increased, the spirals grow
size while their number is reduced [Figs. 2(a) and 2(b)
Near a critical valuetc, the pattern evolves to almost
straight rolls swept by gliding dislocations [Fig. 2(c)
which gradually annihilate by collisions (see also [21]
An analysis of the defect dynamics in the infinite Prand
number limit is presented in [22]. The ratiotcytKL (where
tKL denotes the critical rotation for the onset of th
Küppers-Lortz instability) grows as the Prandtl number d
creases. Its value is close to unity for Prandtl numbers e
ceeding a few units and approaches2 for P  0.8. When
the rotation rate is larger thantc, the KL instability is suf-
ficient to destabilize the structure and leads to the usu
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FIG. 1. Convective pattern (left) and mean flow (right) fil-
tered by the conditionjCj . supjCjy3 for rigid boundary con-
ditions, P  1.2, e  0.7, and t  10 (a) or t  210 (b)
showing positive and negative vortices according to signstd.

spatiotemporal chaotic dynamics governed by the prop
gation of dislocation arrays separating randomly oriente
roll patches [Fig. 2(d)] whose size decreases ase increases
[23–25].

In order to quantitatively characterize the relaminariza
tion effect of a moderate rotation, we have considered th

FIG. 2. Convective pattern for rigid boundary conditions a
P  1.2, e  0.7, and rotation ratest  0 (a), t  10 (b),
t  40 (c), andt  56 (d), to be compared totKL  29.6.
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FIG. 3. Variation of the correlation lengthz with tytKL, for
different values of the Prandtl number.

correlation lengthz̄ , defined as the time average ofz 
skk2l 2 kkl2d21y2, where kul stands for

R
ujŴs $kdj2d2 $kyR

jŴ s $kdj2d2 $k, and whereŴ denotes the horizontal Fourier
transform of the convective mode. Figure 3 displays t
variation of z̄ with tytKL for different values of the
Prandtl number. The relaminarization effect at sma
Prandtl number is clearly visible as a sharp maximum
the correlation length. This effect is also visible in exper
mental results reported in Fig. 4 of Ref. [26], although th
authors do not stress this point. The maximum correlati
occurs neartKL for Prandtl numbers larger than unity, bu
is associated to faster rotations when the Prandtl num
is reduced. This indicates that rotation and mean flow a
in opposite directions.

In a cylindrical geometry, the dislocations cannot ann
hilate each other as efficiently as in the periodic case.
a result, although the patterns obtained for intermedia
values of the rotation rate [Fig. 4(b)] still present a high
degree of correlation than in the absence of rotation, th
do not reduce to straight rolls. A noticeable feature
also that the patterns globally rotate (even when the ro
tion rate is smaller thantKL  23.6 for P  0.8), under
the effect of dislocations generated on the boundary,
effect already noticed in laboratory experiments [27]. F
t . tKL, the rolls tend to break under the effect of she
layers developed by the mean flow [Figs. 4(c) and 4(d)]

In the case of free-slip boundary conditions, the abo
dynamics is affected by the presence of the small-an
instability which is accurately reproduced when the thre
terms involving C in N sW , Cd are retained. In the
weakly nonlinear regime, the effect of this instability i
to gradually rotate the convective rolls through reconne
tions of dislocations produced by the shearing motion
the mean flow.

In the fully nonlinear regime at moderate Prandtl numb
(e  0.5, P  2), the dynamics is significantly different
from that obtained with rigid boundaries. In the absence
rotation, targets and spirals still form [Fig. 5(a)] but the
coherence time is much shorter. The evolution is stri
ingly similar to that observed in laboratory experimen
he
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FIG. 4. Convective pattern in cylindrical geometry forP 
0.8, e  0.7, and t  0 (a), t  18 (b), t  40 (c), and
t  60 (d).

performed at a very large aspect ratio [14]. In both situa
tions, the target formation is initiated by a defect instabil
ity, leading to “roll bulging, pinching and bridging” [28].
This suggests that the strength of the mean flow (whic
is weaker with rigid than with no-slip boundaries) can in
fact be enhanced by increasing the aspect ratio of the co
tainer. With a small rotation (t  10), targets of moderate
size [Fig. 5(b)], associated to patches of positive vorticity

FIG. 5. Convective pattern for free-slip boundary conditions
at P  2, e  0.5, with rotation ratest  0 (a), t  10 (b),
andt  20 taken at two different times (c),(d).
73
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FIG. 6. Variation of the correlation lengthz with t in the
case of free-slip boundaries for different Prandtl numbers.

for the mean flow, are rapidly formed. They subsequen
grow by accreting adjacent rolls and by merging togeth
leading to a unique coherent structure occupying the wh
domain. At a larger value of the rotation rate (t  20),
the dynamics displays an early chaotic phase followed
the emergence of almost straight rolls, visible in the u
per half of Fig. 5(c). Under the action of the small-ang
instability, this structure, similar to that observed in th
case of no-slip boundaries, is destabilized. It bends a
progressively evolves towards big targets embedded i
chaotic background as displayed in Fig. 5(d). In the ca
of a cylindrical box, the pattern adjusts to the symmet
of the container, leading to concentric rolls which occup
the whole domain. The formation of these coherent ta
gets is consistent with the continuous rotation symmetry
the small-angle instability. Fort  60, the dynamics is
dominated by the Küppers-Lortz instability. The cohere
structures are destroyed and a fully chaotic regime dev
ops. Similarly, when at moderate rotation (t  10) the
Prandtl number is increased, the coherent targets form
at small values of the rotation rate become transients
P  6.8, and totally disappear atP  50.

Although with free-slip boundaries, the system deve
ops strong coherent structures, the correlation length d
played in Fig. 6 is significantly different from that obtaine
with rigid boundaries. It does not display a maximum
because of the presence of a fully turbulent backgroun
Furthermore, the destabilizing effect of the mean flow
clearly reflected by the growth of the correlation lengt
with the Prandtl number, an effect emphasized by the fre
slip boundaries.
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