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We report direct numerical simulations of dynamo generation for flow generated using a Taylor-Green
forcing. We find that the bifurcation is subcritical and show its bifurcation diagram. We connect the
associated hysteretic behavior with hydrodynamics changes induced by the action of the Lorentz force.
We show the geometry of the dynamo magnetic field and discuss how the dynamo transition can be
induced when an external field is applied to the flow.
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Larmor is generally credited for suggesting that the
magnetic field of the Sun (and, by extension, of planets
and other celestial bodies) is due to dynamo action—i.e.,
self-generation from the motions of an electrically con-
ducting fluid [1]. This principle has received much theo-
retical support [1] since then and has recently been
validated by experimental observations [2–5]. Dynamo
action results from an instability. When the magnetic
Reynolds number RM (ratio of induction to Joule’s damp-
ing) exceeds a critical value RcM, the null magnetic field
state looses its stability to a non-zero-magnetic field state.
Because of the low value of the magnetic Prandtl number
(ratio of kinematic viscosity to magnetic diffusivity) of the
fluids, this instability develops over a turbulent (noisy)
base state and the choice of an order parameter can be
ambiguous [6]. However, we can assume that some con-
cepts of stability theory apply (cf. later) and study whether
the transition is supercritical or subcritical [7]. In most
models and in all experiments, it is supercritical: RcM is a
unique number, albeit flow dependant. For instance, RcM �
14 and RcM � 18 for the constrained Karlsruhe and Riga
experiments, while RcM � 32 for the fully turbulent von
Kármán sodium (VKS) dynamo [4]. On the other hand, the
dynamo bifurcation could also be subcritical because the
action of a growing magnetic field may reduce hydrody-
namic turbulence and maintain dynamo action for lower
RM values. In fact, the transition can be globally subcritical
if the basic state is unstable with respect to finite amplitude
perturbations [8]. A characteristic hysteretic behavior re-
sults, and the dynamo operates in a range of lower values
RgM < RM < RcM. Subcriticality has been discussed in
MHD�–! dynamical systems [9,10], for numerical simu-
lations of convective dynamos in spherical geometries
[11], and recently for Keplerian shear flows [12].

In this Letter, we study the dynamo bifurcation using full
MHD simulations, generated in a 3D-periodical domain,
by the Taylor-Green (TG) forcing [13]. At low Reynolds
numbers, this flow has several metastable hydrodynamics
states [14]. At higher Reynolds numbers, it has a well de-
fined mean flow together with intense turbulent fluctua-

tions. Studies of the linear problem have shown that, while
the dynamo threshold may run away in flows generated by
random forcing [15], a dynamo is observed at all kinetic
Reynolds numbers [16–18] in the Taylor-Green flow. We
study here the fully nonlinear regime and report evidence
of subcriticality in the bifurcation.

Using standard direct numerical simulation (DNS) pro-
cedures, we integrate pseudospectrally the MHD equations
in a 2�-periodic box:

 

@v
@t
� v � rv � �rP � j� B� �r2v� F; (1)

 

@B
@t
� v � rB � B � rv� �r2B; (2)

together with r � v � r � B � 0; a constant mass density
� � 1 is assumed. Here, v stands for the velocity field, B
the magnetic field (in units of Alfvén velocity), j � �r�
B�=�0 the current density, � the kinematic viscosity, � the
magnetic diffusivity, and P is the pressure. The forcing
term F is given by the TG vortex

 F TG�k0� � 2f�t�
sin�k0x� cos�k0y� cos�k0z�
� cos�k0x� sin�k0y� cos�k0z�

0

2
4

3
5; (3)

implemented here at k0 � 1. We shall consider two types
of forcing: one in which f�t� is set to a constant [f�t� �
1:5]; this is the constant force forcing considered in [16].
Another case corresponds to adjusting 2f�t� so that the (1,
1, 1) Fourier components of the velocity remains equal to
the Taylor-Green vortex; this is the constant Taylor-Green
vortex forcing considered in [17]. For the linear instability
problem, both cases yield the same value of RcM [16,17]. In
order to explore the nonlinear regime and study the re-
sponse to finite amplitude perturbations, we note that three
control parameters drive the instability: the magnetic and
kinetic Reynolds numbers and the amplitude of an external
magnetic field B0 when applied. They are defined as

 RM �
v0

rms�
�

RV �
v0

rms�
�

� �
B0

v0
rms

: (4)
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Here, � is the size of one TG cell when k0 � 1; the
characteristic speed v0

rms is computed from hydrodynamic
runs in which the Navier-Stokes equation is not coupled to
the induction equation, v0

rms � h
��������������
2EV�t�

p
it � EV is net ki-

netic energy EV�t�, and h�it stands for averaging in time
(1=T

R
T dt). Likewise, in dynamo runs, the intensity of the

magnetic field is estimated from the net magnetic energy
EM�t�, as b � h

���������������
2EM�t�

p
it.

Previous works [17,18] have explored the response of
TG flows to infinitesimal magnetic perturbations, as a
function of the kinetic Reynolds number RV . It was found
that at any RV , there exists a critical RcM above which
perturbations grow exponentially. This is illustrated in
Fig. 1 for a run at RV � 563 and RM � 281 above the
critical value RcM � 206. The initial magnetic field pertur-
bation—with an energy level EM � 10�17 —first grows
exponentially. At time t� 300, the magnetic field has
reached sufficient amplitude so that it can react back
onto the velocity field, saturate the instability, and reach
a statistically stationary state, with approximate equiparti-
tion EM � EV . Times are given here in units of Eq. (1), for
which 1 is very close to 1 eddy turnover time of the flow
(TNL � �=v0

rms � 1:17). This transition from infinitesimal
perturbations builds the (solid) red curve in Fig. 2.

We have then quenched the system: at t � 1000, the
magnetic diffusivity � is suddenly increased by a factor of
4, lowering RM below RcM. After a short transient, both EV
and EM decrease and reach a second statistically stationary

state, with a non zero-magnetic energy—a new dynamo
state, for which equipartition is reached again (Fig. 1). This
behavior is evidence of global subcriticality [8]. The differ-
ent levels of fluctuations in the two regimes suggest the
possibility of different dynamo states, depending on the
magnetic field or on the history of the system. As subcrit-
ical bifurcations are also associated with hysteresis cycles,
we have repeated the quenching procedure starting from
the same dynamo state A (obtained at t � 1000 at RV �
563 in Fig. 1) for increasing values of�, i.e., for decreasing
RM values. The (time-averaged) magnetic and kinetic en-
ergy obtained after rearrangements are then recorded, and
results summarized in Fig. 2 by the curve in the B0 � 0
plane. Starting from point A, one can sustain the dynamo
after quenching through points A2 to A9, until a value RgM
substantially lower than RcM (at A9, RM � 70 compared to
RM � 211 in A3).

We have investigated further the system behavior along
the cycle by monitoring the spatial structure of the mag-
netic and kinetic energy densities, so as to detect possible
changes in the flow structure. In a first regime, until point
A7, the kinetic energy (and hence vrms, i.e., the turbulence
intensity—see Table I) decreases and so does the magnetic
energy—equipartition being essentially preserved. Past
A8, changes occur: EV starts to increase abruptly, while
EM continues to decrease, resulting in a decreasing ratio
EM=EV—cf. later discussion and Fig. 4. Other global
quantities are changing along this branch (see Table I). It
corresponds to a modification in the spatial distribution of
the magnetic energy. As seen in Fig. 3, the dynamo modes
in A7 and A8 are different. At A7, the dynamo has a struc-
ture with magnetic energy ‘‘tubes‘‘ in which the field lines
are concentrated along the diagonal direction (i.e., aligned
with the energy structures). In A8, the dynamo has a
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FIG. 1 (color online). After a dynamo is self-generated from
infinitesimal perturbations, the induction equation is quenched at
t � 1000 by a fourfold increase of the magnetic diffusivity. It
corresponds to a sudden change from A to A9 —cf. Table I.
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FIG. 2 (color). Bifurcation curves and hysteresis cycles when
an external magnetic field is applied (full diamond symbols) or
without one (full circle symbols). In this case, the subcritical
quenched states (see text) form the red line. Jumps between the
two branches link A to A0 and C to C0.
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magnetic energy density with a wavy shape and the field
lines are no longer parallel to the energy structures. In fact,
the geometry of the A8 and A9 dynamo modes is reminis-
cent of the low kinematic mode of the TG dynamo [18].

As turbulence influences the dynamo, we have repeated
the above sequence of quenching at varying kinetic

Reynolds numbers RV . The result is shown in Fig. 4. We
first observe that the hysteretic behavior persists as RV is
lowered. In addition, the hysteresis cycle width, RcM � R

g
M,

decreases with RV . It is interesting to compare their loca-
tions with respect to the dynamo windows evidenced in
[17,18] for the Taylor-Green forcing. As shown in Fig. 4,
RgM values are almost independent ofRV and lie close to the
beginning of the first kinematic dynamo mode. The onset
RcM switches from the kinematic low branch to the kine-
matic high branch as RV increases (and turbulence devel-
ops) [17,18]. The width of the dynamo cycle is thus linked
to the evolution of the RcM�RV� curve. The above results
were obtained with a constant force scheme. We have
repeated the quenching procedure for the constant
Taylor-Green vortex case. As seen in Fig. 4 (black curve/
diamonds symbols), the hysteretic behavior remains, but
the transition towards the nondynamo state is more abrupt.
Another difference concerns the response to quenching.
With a constant velocity forcing, we reach a lower mag-
netic saturation level; when the velocity is kept constant,
there may be less possibility for the Lorentz force to
change the flow.

Finally, we have checked the influence of finite ampli-
tude external perturbations on the hysteresis cycle by
applying an external magnetic field of amplitude B0 �
0:07 in the vertical direction. The result at RV � 563 is
shown by the blue line in Fig. 2. When comparing to the
B0 � 0 case (red curve), two effects are readily observed:
(i) the hysteresis cycle is shortened due to a decrease in the
onset RcM from infinitesimal perturbations; (ii) the ampli-
tude of the magnetic energy in the dynamo is decreased, as
lower b values are obtained. These observations are indi-
cations that the external magnetic field has mediated a
transition towards another equilibrium state [14]. The tran-

TABLE I. The characteristics of each regime are : the root
mean square amplitude of the magnetic and velocity fields b �
h
���������������
2EM�t�

p
it, vrms � h

��������������
2EV�t�

p
it, the integral length scales LB �

h
P
EB�k; t�=kit, LU � h

P
EV�k; t��=kit computed from the one-

dimensional energy spectra E�k; t�.

Point � RM b LB vrms LU

A 0.03 281 2.8 5.2 2.7 3.0
A2 0.035 241 2.8 5.3 2.5 3.0
A3 0.04 211 2.8 5.4 2.5 2.9
A4 0.05 169 2.7 5.5 2.3 2.9
A5 0.07 121 2.6 5.7 2.0 2.9
A6 0.08 106 2.5 5.7 1.8 2.9
A7 0.09 94 2.4 5.7 1.7 2.9
A8 0.1 84 2.0 5.5 1.7 2.9
A9 0.12 70 1.6 5.1 1.9 3.0
A10 0.15 56 0.0 0.0 2.7 2.6
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FIG. 4 (color). Hysteresis cycle for different Reynolds num-
bers and forcings—constant force (red, blue) and constant
Tayor-Green vortex (black). The thick solid line in the b � 0
plane is the linear instability RcM vs RV from dynamical runs; the
kinematic dynamo windows [18], RM 2 	50 110
 and RM > 320,
are delimited by the thick dotted lines.

FIG. 3 (color). Volume rendering (75% of max�b�) of the
magnetic energy and magnetic field lines [27], for the normal-
ized magnetic field hB�x; t�=B�t�i averaged in time during the
run; (a) point A7 and (b) point A8.
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sition towards this second equilibrium state is quite robust:
one can also obtain it by switching on the vertical magnetic
field starting from a state with a well-developed dynamo
(jump from A to A0 in Fig. 2). Conversely, starting from a
dynamo state with an applied magnetic field and switching
it off, one returns to the zero-magnetic field hysteresis
curve (jump from C to C0 in Fig. 2).

A less deterministic behavior is observed when the
system is operated in the vicinity of pointD—shown along
the blue curve in Fig. 2. At this point, the system is
operated at a magnetic Reynolds number slightly smaller
than the linear threshold (93.8 compared to about 100) and
one observes spontaneous switches between dynamo and
nondynamo states, as shown in Fig. 5. This is reminiscent
of the ‘‘on-off’’ bifurcation scenario sometimes proposed
for the dynamo [19–22] at high RV . It has been observed in
models [23] and experimental [24] versions of the Bullard
dynamo [25], and possibly in turbulent fluid dynamos [5].
We note in Fig. 5 that the kinetic energy has stronger
fluctuations during the dynamo periods.

To summarize, we have evidenced in the TG flow sev-
eral features characteristic of subcriticality of the dynamo
instability. At variance with typical dynamical systems,
this behavior is obtained in a fully turbulent system, where
fluctuations are of the same order of magnitude as the mean
flow. We may remark that in this case, the traditional
concept of amplitude equation may be ill-defined and
one may have to generalize the notion of ‘‘subcritical
transition’’ for turbulent flows. Another feature is the sen-
sitivity to perturbations of the order parameter through the
application of an external magnetic field. The perturbation
mainly acts through macroscopic changes in the system
configuration (perturbation of the velocity field), allowing
lower thresholds for dynamo instability. These findings
open new perspective for experimental dynamos. For the
TG flow, we observe a decrease of the dynamo threshold by
as much as 57%, with an external applied field of B0 �
0:07. We have also found that changes in the geometry of

the dynamo states in the subcritical branch are consistent
with the coexistence of several metastable hydrodynamics
states [14]. Preliminary observations in the VKS experi-
ment also point to the existence of subcritical dynamos in
the presence of global rotation [26], a feature also noted in
some numerical models of the geodynamo [11].
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FIG. 5 (color online). Evolution on time of the kinetic (EV)
and magnetic energy (EB) when the flow is operated in the
immediate vicinity of point D—shown in Fig. 2.
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