A single-shot optical linear polarimeter for asteroid studies

C. Pernechele; L. Abe; P. Bendjoya; A. Cellino; G. Massone; J. P. Rivet; P. Tanga

Abstract

Polarimetric studies of minor Solar System bodies are useful to access physical parameters, such as albedo and diameter, which are both important and difficult to derive by other techniques. Current activities in this field are limited since most instruments adopted in recent observing campaigns involve photomultipliers detectors. These sensors are suitable for observations of objects with fast polarization variations, but usually suffer from low quantum efficiency. This severely limits the number of accessible targets. For asteroids, the polarization evolves slowly enough to allow more sensitive albeit slower detectors (CCD-based polarimeters). However, polarimetric measurement accuracy may be hampered with usual 'sequential' polarimeters. Indeed, retarder plate swapping time, readout and exposure time add up. Consequently, the time laps between complementary polarization measurements (some minutes) may be non-negligible in some cases, compared to the evolution time of the polarization parameters. Moreover, polarimetric accuracy may also be limited by airmass variations from complementary exposures. We are developing a new 'single-shot' CCD polarimeter based on a "double-Wollaston" configuration already described in literature [9][10]. This allows simultaneous acquisition of the three Stokes parameters I, Q, U without any moving parts. So, the linear polarization degree can be measured accurately, even for targets with fast polarization and/or airmass variations. Presently, the polarization analyzer is in calibration phase, and will be installed soon at the F/12.5 Cassegrain focus of the West telescope at the "Centre Pédagogique Planète et Univers" facility (C2PU, Observatoire de la Côte d'Azur, Plateau de Calern, France) © (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Topics

Calibration; Equipment and services; Photomultipliers; Polarimetry; Polarization; Quantum efficiency; Sensors; Telescopes; Wave plates

Citation

Related Journal Articles

Filter By Topic >

Absolute radiometric calibration of the IKONOS-2 multispectral camera using a reflectance-based method and empirical comparison with IKONOS and QuickBird images

Filter By Topic >

Related Proceedings Articles

Filter By Topic >

Applications of the automatic change detection for disaster monitoring by the knowledge-based framework

Proceedings of SPIE (November 09 2012)

Onboard calibration status of the ASTER instrument

Proceedings of SPIE (November 09 2012)

Evaluation of the Performance of Digital Mammography Systems: Physical and Psychophysical Characterization

Diagnostic and Therapeutic Applications of Breast Imaging > Chapter 7.

Onboard calibration status of the ASTER instrument

Related Book Chapters

Filter By Topic >

Evaluating the Performance of Digital Mammography Systems: Physical and Psychophysical Characterization

Diagnostic and Therapeutic Applications of Breast Imaging > Chapter 7.

Lateral-Effect Position-Sensing Detectors

Filter By Topic >

Related Content

Customize your page view by dragging & repositioning the boxes below.

Some tools below are only available to our subscribers or users with an online account.

PDF Email

Share Get Citation

Article Alerts
Sign in or Create a personal account to buy this article ($15 for members, $18 for non-members).

Sign in via: Shibboleth

Forgot your password? click here to reset it on our main site, spie.org

Access This Article

Title: A single-shot optical linear polarimeter for asteroid studies

Wavefront Sensor Calibration

[+] View More

Topic Collections

Optics

JOBS

Read more Jobs at SPIE Career Center >

Advertisement

Site Map

HOME
PROCEEDINGS
JOURNALS
eBOOKS
TOPIC COLLECTIONS

Services

Subscribe
Alerts
Information for Librarians
Privacy Policy
Terms Of Use
Contact Us
About the Digital Library

Other Resources

SPIE.org
SPIE Membership
SPIE Career Center

Information for Authors

Books
Journals
Proceedings
Reprint Permissions
About Open Access

SPIE © 1962 - 2012. All Rights Reserved.